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5 Abstract—Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction

6 and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of

7 both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework

8 employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder

9 network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All

10 the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the

11 proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for

12 higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for

13 variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the

14 benchmark datasets.

15 Index Terms—Video compression, neural network, end-to-end optimization, image compression

Ç

16 1 INTRODUCTION

17 VIDEO compression is widely used to reduce storage and
18 bandwidth requirements when storing and transmitting
19 videos. It is reported that video content contributes to more
20 than 80 percent internet traffic [1], and the percentage is
21 expected to increase even further. Therefore, it is necessary
22 to design an efficient video compression system and gener-
23 ate higher quality frames at a given bandwidth budget.
24 A lot of video compression standards have been pro-
25 posed in the past decades. For example, H.264 [2] is the
26 most widely used video codecs and H.265 [3] is the latest
27 video compression standard. All these algorithms follow
28 the hybrid coding architecture with motion-compensated
29 prediction and residual transform coding. However, these
30 algorithms [2], [3] rely on hand-crafted modules, e.g., block
31 based motion estimation and discrete cosine transform
32 (DCT), to reduce the spatial and temporal redundancies in
33 the video sequences. Therefore, it is possible to further
34 improve video compression performance by developing
35 new learning based methods.
36 Recently, deep neural network (DNN) based auto-
37 encoders for image compression [4], [5], [6], [7], [8], [9], [10],
38 [11], [12], [13] have achieved comparable or even better

39performance than the traditional image codecs like JPEG [14],
40JPEG2000 [15] or BPG [16]. One possible explanation is that
41the DNN based image compression methods can employ the
42end-to-end training strategy and highly non-linear transform,
43which are not used in the traditional approaches. Besides, the
44existing methods also try to employ DNNs for video com-
45pression [17]. However, most work only replace one or two
46modules [18], [19], [20], [21], [22] in the traditional framework
47instead of optimizing the video compression system in an
48end-to-end fashion.
49There are two major challenges for building an end-to-
50end video compression system. First, it is very difficult to
51build a learning based video compression system because
52of the complicated coding procedure. The existing learning
53based video compression approach [23] cannot exploit the
54power of end-to-end optimization and also ignore the
55widely used hybrid coding scheme in the traditional video
56codecs. Therefore, it is critical to combine the advantages of
57both neural networks and the hybrid framework in tradi-
58tional compression. Moreover, to exploit the power of the
59end-to-end training strategy for the learning based com-
60pression system, the rate-distortion optimization technique
61is also required to optimize the whole system. Second, it is
62necessary to design a scheme to generate and compress the
63motion information that is tailored for video compression.
64Video compression methods heavily rely on motion infor-
65mation to reduce temporal redundancy in video sequences.
66A straightforward solution is to use the learning based opti-
67cal flow approach to represent motion information, how-
68ever, the current optical flow methods only aim at
69generating accurate flow maps and are often not optimal for
70a particular task [24]. Besides, the data volume of optical
71flow increases significantly when compared with motion
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72 information in the traditional block based compression sys-
73 tems. Therefore, instead of using the traditional differential
74 methods in [2], [3], optical flows should be compressed
75 more efficiently.
76 In this paper, we propose the first end-to-end deep video
77 compression (DVC) model. Our framework combines the
78 advantages of both neural networks and the traditional
79 video compression methods. The contributions of this work
80 can be summarized as follows:

81 � All components in video compression, i.e., motion esti-
82 mation, motion compensation, residual compression,
83 motion compression, and bit rate estimation, are
84 implementedwith the end-to-end neural networks.
85 � The components in the video compression system
86 are jointly optimized based on rate-distortion trade-
87 off through a single loss function, which leads to
88 higher compression efficiency.
89 � The proposed framework is very flexible and two var-
90 iants (DVC_Lite and DVC_Pro) of our DVC frame-
91 work are also proposed for speed/efficiency priority.
92 � We propose the adaptive quantization layer for the
93 DVC framework, which significantly reduces the
94 number of parameters for variable bitrate coding.
95 � Experimental results show that our framework out-
96 performs the widely used video codec H.264 and the
97 existing learning based video codec.
98 This work builds upon the preliminary conference paper
99 [25] with the following substantial improvements. (1) A

100 more efficient motion estimation approach and a light-
101 weight motion compression network are employed in our
102 framework to effectively generate and compress the motion
103 information with fewer trainable parameters. Based on
104 these techniques, the newly proposed framework in this
105 work (named as DVC_Lite) achieves comparable perfor-
106 mance with the DVCmodel in [25], while DVC_Lite reduces
107 the FLOPs by 76 percent and is 2.2 times faster in terms of
108 speed. (2) Due to the high flexibility of the proposed frame-
109 work, an advanced model DVC_Pro is further proposed by
110 using more efficient residual/motion compression net-
111 works and the corresponding refinement networks. When
112 compared with the previous DVC model, DVC_Pro outper-
113 forms DVC by up to 0.7dB. (3) An adaptive quantization
114 layer is proposed for the variable bitrate coding and reduces
115 the number of parameters significantly. (4) More experi-
116 ments and extensive analysis, including computational
117 complexity and loss function, are provided to demonstrate
118 the effectiveness of our proposed framework.

119 2 RELATED WORK

120 2.1 Image Compression

121 Several image compression standards [14], [15], [16] were
122 proposed in the literature. Although these methods can
123 compress the images effectively, they heavily rely on hand-
124 crafted techniques. For example, the JPEG standard [14] lin-
125 early maps the pixels to another domain by using DCT and
126 the corresponding coefficients are quantized before entropy
127 coding [14]. One disadvantage is that all the modules in the
128 traditional codecs are separately optimized and may not
129 achieve optimal compression performance.

130Recently, the learning based image compression
131approaches [4], [5], [6], [7], [8], [10], [11], [11], [12], [13], [26],
132[27], [28], [29], [30], [31] have attracted increasing attention.
133In [4], [6], [9], recurrent neural networks (RNNs) based
134auto-encoders are utilized to design a progressive image
135compression scheme. And then this approach is further
136improved by using more advanced RNN architectures,
137learning based entropy model and spatial adaptive bitrate
138allocation [6], [9]. Other methods employed the CNNs to
139build an auto-encoder style network for image compression
140[5], [8], [10]. Besides, to optimize the learning based com-
141pression system, the methods in [4], [6], [9] only tried to
142minimize the distortion (e.g., mean square error) between
143the original frames and the reconstructed frames without
144considering the number of bits used for compression. Mean-
145while, the rate-distortion optimization technique [32] was
146adopted in [5], [8], [10], [11] for higher compression effi-
147ciency by introducing the number of bits in the optimization
148procedure. To estimate the bit rates, the context models are
149learned for adaptive arithmetic coding in [11], [12], [26],
150while non-adaptive arithmetic coding is used in [5], [10]. In
151addition, other techniques such as generalized divisive nor-
152malization (GDN) [5], multi-scale image decomposition
153[12], adversarial training [12], importance map [11], [26],
154conditional probability models [26], auto-regressive model
155[27], [30] and intra prediction [33], [34] were proposed to
156improve the image compression performance. Although the
157learning based image compression methods outperform the
158traditional image codecs, it only reduces the spatial redun-
159dancy without considering the temporal relationship.
160For image compression, how to generate visually pleas-
161ing reconstructed images is a critical problem. In [13],
162Agustsson et al. used the generative adversarial network
163based image codec to obtain high perceptual quality images
164at very low bitrates. Patel et al. [35] analyzed the commonly
165used metrics like PSNR or MS-SSIM and perform the
166human study on perceptual similarity for different image
167compression techniques. In [29], a deep perceptual metric
168was proposed for learning based image compression by
169using better quality for human eyes. Patel et al. [31] pro-
170posed the rate-distortion-perception trade-off by introduc-
171ing the perception term in the optimization procedure.

1722.2 Video Compression

173Recently, deep learning techniques are employed for video
174compression [17]. Most methods aim to improve the perfor-
175mance of the existing video compression algorithms by
176replacing particular modules, such as intra prediction and
177residual coding [18], mode decision [19], entropy coding
178[20] and post-processing [21], [22]. However, these methods
179are not optimized in an end-to-end fashion. In [36],
180Chen et al. proposed a block based learning approach for
181video compression. However, it will inevitably generate
182blockiness artifact in the boundary between blocks. Further-
183more, they used the motion information propagated from
184the previously reconstructed frames through the traditional
185block based motion estimation method, which will degrade
186the compression performance. Tsai et al. proposed an auto-
187encoder network to compress the residual from the H.264
188encoder for the specific domain videos [37]. This work does
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189 not use a deep model for motion estimation, motion com-
190 pensation or motion compression. In [38], Cheng et al.
191 obtained the predicted frame through frame interpolation
192 without encoding motion information, which may degrade
193 the compression performance.
194 The most related work is the RNN based approach in [23],
195 where video compression is formulated as frame interpola-
196 tion. However, the motion information in their approach is
197 also generated by the traditional block based motion estima-
198 tionmethod,which is encoded by the existing non-deep learn-
199 ing based image compression method [39]. In other words,
200 estimation and compression of motion information are not
201 accomplished by deep models and jointly optimized with
202 other components. Besides, the video codec in [23] only aims
203 at minimizing the distortion (i.e., mean square error) between
204 the original frame and the reconstructed frame without con-
205 sidering rate-distortion trade-off in the training procedure. In
206 comparison, in our network, motion estimation and compres-
207 sion are achieved by DNNs, which is jointly optimized with
208 other components by considering the rate-distortion trade-off
209 of thewhole compression system.

210 2.3 Motion Estimation

211 Motion estimation is a critical component in the video com-
212 pression system. To reduce the computational complexity
213 of the motion estimation procedure, the traditional video
214 codecs use the block based motion estimation algorithms
215 [40], [41], [42], which well support hardware implementa-
216 tion. However, the block based methods may introduce
217 inaccurate motion information and thus degrade the com-
218 pression performance.
219 In the computer vision tasks, optical flow is widely used
220 to exploit the temporal relationship. Recently, a lot of learn-
221 ing based optical flow estimation methods [43], [44], [45],
222 [46], [47] have been proposed. These approaches motivate
223 us to integrate optical flow estimation into our end-to-end
224 learning framework. When compared with the block based
225 motion estimation method in the existing video compres-
226 sion approaches, learning based optical flow estimation
227 methods can provide accurate motion information at pixel-
228 level, which can be also optimized in an end-to-end manner.

229It should be mentioned that the optical flowmethods in [43],
230[44], [45], [46], [47] are designed for tracking true motion tra-
231jectory instead of considering the rate-distortion balance in
232video compression. Besides, due to the increased data vol-
233ume, more bits are required to compress motion informa-
234tion if optical flow values are encoded by the traditional
235video compression approaches. Therefore, it is necessary to
236design an efficient motion compression scheme for learning
237based video compression methods.

2383 OVERVIEW OF THE PROPOSED FRAMEWORK

239Introduction of Notations. Let V ¼ fx1; x2; . . . ; xt�1; xt; :::g
240denote the current video sequences, where xt is the frame at
241time step t. The predicted frame is denoted as �xt and the
242reconstructed/decoded frame is denoted as x̂t. rt represents
243the residual (error) between the original frame xt and the
244predicted frame �xt. r̂t represents the reconstructed/decoded
245residual. To reduce temporal redundancy, motion informa-
246tion is required. Among them, vt represents the motion vec-
247tor or optical flow value. And v̂t is its corresponding
248reconstructed version. Linear or nonlinear transform can be
249used to improve compression efficiency. Therefore, residual
250information rt is transformed to yt, and motion information
251vt can be transformed tomt, ŷt and m̂t are the corresponding
252quantized versions, respectively.

2533.1 Hybrid Coding Framework of Video Compression

254In this section, we first give a brief overview of the hybrid
255coding framework for video compression. Please refer to
256[2], [3] for more details.
257The hybrid coding framework is shown in Fig. 1a. All the
258modules in Fig. 1a are included in the encoder while green
259color modules are not included in the decoder. Specifically,
260the input frame xt is split into a set of blocks, i.e., square
261regions, of the same size (e.g., 64� 64). The blocks in the
262whole frame are encoded in raster-scan order. The encoding
263procedure of the traditional video compression algorithm is
264summarized as follows,
265Step 1. Block based motion estimation. We estimate the
266motion between the current frame xt and the previous

Fig. 1. (a): The predictive coding architecture used by the traditional video codec H.264 [2] or H.265 [3]. (b): The proposed end-to-end video compres-
sion network. The modules with green color are not included in the decoder. “MV Encoder Net” and “MV Decoder Net” represent the “Motion Vector
Encoder Net” and “Motion Vector Decoder Net”.
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267 reconstructed frame x̂t�1. The correspondingmotion vector vt
268 for each block is obtained.
269 Step 2. Motion compensation. Based on the motion vector vt
270 from Step 1, the predicted frame �xt is obtained by copying the
271 corresponding pixels in the previous reconstructed frame to
272 the current frame. The residual rt between the original frame
273 xt and the predicted frame �xt is obtained as rt ¼ xt � �xt.
274 Step 3. Transform and quantization. The residual rt is first
275 converted to a compact domain by a linear transform and
276 then quantized to ŷt for entropy coding.
277 Step 4. Inverse transform. The quantized result ŷt in Step 3
278 is used by the inverse transform for obtaining the recon-
279 structed residual r̂t.
280 Step 5. Entropy coding. Both the motion vector vt in Step 1
281 and the quantized result ŷt in Step 3 are encoded into bits
282 by the entropy coding method and sent to the decoder.
283 Step 6. Frame reconstruction. The reconstructed frame x̂t is
284 obtained by adding �xt from Step 2 and r̂t from Step 4, i.e.,
285 x̂t ¼ r̂t þ �xt. The reconstructed frame will be stored in the
286 decoded frame buffer and used for the ðtþ 1Þth frame at
287 Step 1 for motion estimation.

288 3.2 Overview of the Proposed End-to-end Deep
289 Video Compression

290 Fig. 1b provides a high-level overview of our end-to-end
291 video compression framework. Our model follows the hybrid
292 coding framework of motion-compensated prediction and
293 residual transform coding, but all modules in our approach
294 are designed and implemented by using convolution net-
295 works. The differences between our method and the tradi-
296 tional video compression codecs are summarized as follows,
297 Step 1. Motion Estimation and Compression. Instead of
298 using the traditional block based motion estimation, we use
299 a CNN model [44] to estimate the optical flow map, which

300is considered as the motion information vt. Furthermore, in
301contrast to the compression method for motion information
302in the traditional codecs, a CNN model is proposed to com-
303press the optical flow map in a lossy way, as the data vol-
304ume of optical flow increases significantly in our work.
305Specifically, vt is compressed by an auto-encoder style net-
306work with quantization, and the corresponding latent repre-
307sentations before and after quantization are denoted as mt

308and m̂t, respectively. The reconstructed motion information
309is denoted as v̂t. The details are given in Section 4.2.
310Step 2. Motion Compensation. Instead of using block based
311motion compensation as H.264/H.265, a pixel-wise motion
312compensation approach is implemented by using a neural
313network and we can then obtain the predicted frame �xt

314based on the optical flow map v̂t obtained in Step 1. More
315information is provided in Section 4.3.
316Step 3-4. Transform, Quantization and Inverse Transform.
317We replace the linear transform in the traditional compres-
318sion method by using a highly non-linear residual encoder-
319decoder network, and the residual rt is non-linearly
320mapped to the representation yt. Then yt is quantized to ŷt.
321The quantized representation ŷt is fed into the residual
322decoder network to obtain the reconstructed residual r̂t.
323The details are presented in Section 4.4 and Section 5.
324Step 5. Entropy Coding. At the testing stage, the quantized
325motion representation m̂t from Step 1 and the residual
326representation ŷt from Step 3 are encoded into bits by using
327arithmetic coding. At the training stage, to estimate bit cost
328in our proposed approach, we use the bit rate estimation
329net in Fig. 1 to obtain the probability distribution of each
330symbol in the quantized representations and calculate the
331entropy to approximate the bit cost. More information is
332provided in Section 5.
333Step 6. Frame Reconstruction. The reconstructed frame x̂t is
334generated based on the predicted frame �xt and the recon-
335structed residual r̂t.
336In summary,motion information, residual information and
337entropy bits for hybrid coding are all learned by using net-
338works in the proposed framework. Finally, all these functional
339modules are jointly optimized in an end-to-end way by using
340a single rate-distortion loss. And thus these modules can col-
341laborate with each other during optimization and it is
342expected to achieve better compression performance. The
343experimental results and ablation studies validate the advan-
344tage of such an end-to-end framework. Moreover, our frame-
345work is very flexible and all network modules can be easily
346updated or replaced by using lightweight or advanced net-
347works for higher speed or better performance.

3484 NETWORK ARCHITECTURES FOR DEEP

349VIDEO COMPRESSION

350In our proposed deep video compression framework, all the
351components are implemented by deep neural networks. In
352this section, we will introduce the motion estimation net,
353motion vector encoder/decoder net, motion compensation,
354residual encoder/decoder net and bit rate estimation net.

3554.1 Motion Estimation Net

356In our proposed DVC model, we use the learning
357based optical flow method Spynet [44] to estimate motion

Fig. 2. Optical flow visualization and statistic analysis.
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358 information. Spynet employs a pyramid architecture to esti-
359 mate the optical flow map between two neighboring frames
360 in a coarse to fine manner. Specifically, the previous frame
361 x̂t�1 and the current frame xt are the input for Spynet and
362 the output is the estimated optical flow map vt, which will
363 be compressed by the following motion compression mod-
364 ule. In fact, any new state-of-the-art optical flow estimation
365 net can also be adopted in the proposed compression frame-
366 work and its performance improvement will benefit the
367 whole compression framework.
368 Furthermore, the motion estimation net is jointly opti-
369 mized with the whole compression system by minimizing
370 the rate-distortion trade-off. Therefore, when compared
371 with the original flow map from Spynet, the estimated
372 flow map in our method is more compressible. In Fig. 2,
373 we provide a visual comparison between the flow maps
374 with or without joint training. Figs. 2a and 2b represent the
375 frame 5 and frame 6 from the Kimono sequence in the
376 HEVC Class B dataset. Fig. 2c denotes the reconstructed
377 optical flow map when the optical flow network is fixed
378 during the training procedure. Fig. 2d represents the recon-
379 structed optical flow map after using the joint training
380 strategy. Figs. 2e and 2f are the corresponding probability
381 distributions of the optical flow magnitudes. It can be
382 observed that the reconstructed optical flow map by joint
383 training has more pixels with zero value, especially for the
384 homogeneity regions like the human body in Fig. 2d. More
385 importantly, the optical flow map with more zero values
386 requires much fewer bits for encoding. For example, it
387 needs 0.045 bpp for encoding the optical flow map in
388 Fig. 2c, while it saves 15 percent bits and only needs 0.038
389 bpp for encoding the optical flow map in Fig. 2d.
390 When compared with the traditional motion estimation
391 approaches, the learning based optical flow maps provide
392 accurate motion and can be optimized with the whole video
393 compression system.

394 4.2 MV Encoder Net and MV Decoder Net

395 To compress pixel-level optical flow vt from the motion esti-
396 mation network, we utilize an auto-encoder style network,
397 which is first proposed by [5] for the image compression
398 task. The whole Motion Vector (MV) compression network
399 is shown in Fig. 3. The optical flowmap vt is fed into a series
400 of convolution operations and nonlinear transform. The
401 number of output channels for convolution (deconvolution)

402is 128 except for the last deconvolution layer, which is equal
403to 2. Given the optical flow vt with the size of M �N � 2,
404the MV encoder will generate the motion representation mt

405with the size of M=16�N=16� 128. Then mt is quantized
406to m̂t. The MV decoder receives the quantized representa-
407tion and reconstructs motion information v̂t. Besides, the
408quantized representation m̂t will be used for entropy cod-
409ing. Based on the proposed mv encoder and decoder net-
410work, the optical flow map can be efficiently compressed.

4114.3 Motion Compensation Net

412Given the previous reconstructed frame x̂t�1 and the motion
413vector v̂t, the motion compensation network obtains the pre-
414dicted frame �xt, which is expected to be as close as to cur-
415rent frame xt. First, the previous frame x̂t�1 is warped to the
416current frame based on the motion information v̂t in the fol-
417lowing way,

~xt ¼ Wðx̂t�1; v̂tÞ; (1)

419419

420where ~xt is the warped frame and W is the backward warp
421operation [48]. To further improve the quality of the warped
422frame ~xt, we concatenate ~xt and the reference frame x̂t�1 as
423the input, then feed them into another CNN to obtain the
424refined predicted frame �xt. Our motion compensation
425approach is shown in Fig. 4a and the detailed network
426architecture is provided in Fig. 4b.
427Figs. 5a and 5b represent the predicted frame from our
428DVC model and H.265, respectively. Since our proposed
429method is a pixel-wise motion compensation approach, it
430can provide more accurate temporal information and avoid
431the blockiness artifact in the traditional block based motion
432compensation method. It means that we do not need the

Fig. 3. Our MV Encoder-decoder network. Conv(3,128,2) represents the
convolution operation with the kernel size of 3� 3, the output channel of
128 and the stride of 2. GDN/IGDN [5] is the nonlinear transform
function. The binary feature map is only used for illustration.

Fig. 4. Our motion compensation network.

Fig. 5. Visual comparison of the predicted frames between our model
and H.265.

LU ET AL.: END-TO-END LEARNING FRAMEWORK FOR VIDEO COMPRESSION 5
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433 hand-crafted loop filter or the sample adaptive offset tech-
434 nique [2], [3] for post-processing.

435 4.4 Residual Encoder and Decoder Net

436 After motion estimation and motion compensation, we can
437 obtain the predicted frame �xt and the corresponding resid-
438 ual information rt. Then the residual encoder is used to
439 map rt to a compact domain for high efficiency compres-
440 sion, while the residual decoder is used to reconstruct the
441 corresponding reconstructed residual information r̂t. We
442 follow the variational image compression framework [8] to
443 compress the residual. Specifically, the residual information
444 is compressed based on an auto-encoder style network,
445 which is composed of several convolution layers and
446 GDN/IGDN layers [5]. More importantly, to provide an
447 accurate probability estimation for the latent representation,
448 a prior network is employed to predict the probability dis-
449 tribution of each representation. Please refer to [8] for more
450 details. Compared with discrete cosine transform in the tra-
451 ditional video compression system, our approach can better
452 exploit the power of non-linear transform and achieve
453 higher compression efficiency.

454 4.5 Bit Rate Estimation Net

455 To optimize the whole network by considering both distor-
456 tion and the number of bits, we need to obtain the bit rate of
457 the generated latent representations. As we know, the accu-
458 rate measure for bitrate is the entropy of the corresponding
459 latent representation symbols. Therefore, we use the CNN
460 model in [8] to estimate the probability distributions of ŷt
461 and m̂t. The bit rate estimation net in [8] employs a univari-
462 ate non-parametric density model based on the cumulative
463 to estimate the probability distribution.

464 5 NETWORK OPTIMIZATION

465 To build an end-to-end deep video compression system, it is
466 still required to solve several issues before putting all the
467 neural networks together. In this section, we will introduce
468 the loss function, quantization and decoded frame buffer,
469 which are indispensable for the end-to-end training.

470 5.1 Loss Function

471 The goal of our video compression framework is to mini-
472 mize the number of bits used for encoding, while at the
473 same time reduce the distortion between the original input
474 frame xt and the reconstructed frame x̂t. Therefore, we solve
475 the following rate-distortion optimization problem,

L ¼ �DþR ¼ �dðxt; x̂tÞ þ ½Hðm̂tÞ þHðŷtÞ�; (2)

477477

478 where dðxt; x̂tÞ denotes the distortion between xt and x̂t and
479 can be measured by mean square error (MSE) or multi-scale
480 structure similarity (MS-SSIM) [49]. Hð�Þ represents the
481 number of bits used for encoding the representations. In
482 our approach, both residual representation ŷt and motion
483 representation m̂t should be encoded into the bitstreams. �
484 determines the trade-off between the number of bits and the
485 distortion. To stabilize the training procedure, we also intro-
486 duce an auxiliary loss, which is formulated as follows,

L0 ¼ �DþR ¼ �½dðxt; x̂tÞ þ bdðxt; ~xtÞ� þ ½Hðm̂tÞ þHðŷtÞ�;
(3)

488488

489where ~xt is the warped frame based on the reconstructed
490optical flow. The weight parameter b is set to 0.1.

4915.2 Quantization

492Latent representations such as residual representation yt
493and motion representation mt are required to be quantized
494before entropy coding. However, the quantization operation
495is not differential, which makes end-to-end training impos-
496sible. To address this problem, a lot of methods have been
497proposed [4], [5], [7]. Inspired by [5], we also replace the
498quantization operation by adding uniform noise in the
499training stage. Taking yt as an example, the quantized repre-
500sentation ŷt in the training stage is approximated by adding
501uniform noise to yt, i.e., ŷt ¼ yt þ h, where h is uniform
502noise. In the inference stage, we use the rounding operation
503directly, i.e., ŷt ¼ roundðytÞ.

5045.3 Decoded Frame Buffer

505As shown in Fig. 1, the previous reconstructed frame x̂t�1 is
506required in the motion estimation and motion compensation
507networks when compressing the current frame xt. There-
508fore, the encoding procedure forms a chain of dependency.
509To solve this issue and simplify the training procedure,
510we adopt an online updating strategy. Specifically, the
511reconstructed frame x̂t in each iteration will be saved in a
512buffer. In the subsequent iterations, x̂t in the buffer will be
513used for motion estimation and motion compensation when
514encoding xtþ1. Therefore, each training sample in the buffer
515will be updated in an epoch. In this way, we can store one
516previous frame for each video clip at each iteration, which
517is more efficient.

5185.4 Training Strategy

519In our implementation, we first optimize the whole network
520based on the loss function L0 for 0.5 � 106 steps. Then we
521use the loss function L for 2 � 106 steps. We use the Adam
522optimizer [50] by setting the initial learning rate as 0.0001.
523The learning rate is divided by 10 when the loss becomes
524stable. The motion estimation module is initialized with the
525pre-trained weights in [44]. The whole system is imple-
526mented based on Tensorflow and it takes about 4 days to
527train the whole network when using two GTX 1080Ti GPUs.

5286 EXTENSIONS FOR OUR DVC MODEL

529Our framework is very flexible and the existing algorithms
530(e.g., the optical flow estimation and image compression
531methods) can be readily plugged into our framework. Consid-
532ering that the compression efficiency and computational com-
533plexity are the two most important metrics for practical video
534codecs, two variants DVC_Lite and DVC_Pro of the DVC
535model are proposed in this section. Specifically, the DVC_Lite
536method is a lightweight video compression approach, which
537reduces 76 percent FLOPs and achieves similar compression
538performance when compared with the DVC model. The
539DVC_Pro model is an advanced video compression frame-
540work and achieves the competitive compression performance
541when compared with H.265 in terms of PSNR. More
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543 the learning based video compression method. Therefore, the
544 encoder can share the same baseline model at different
545 bitrates, which reduces themodel sizes significantly.

546 6.1 DVC_Lite

547 The lightweight model DVC_Lite is based on the previous
548 model and has the following improvements.
549 Motion Estimation. First, we propose an efficient motion
550 estimation approach. Although Spynet [44] can provide accu-
551 rate pixel-level optical flow, its computational complexity is
552 also very high. In our DVC_Lite framework, we balance the
553 accuracy of optical flow estimation and computational com-
554 plexity and propose a new optical flow estimation approach to
555 obtain the motion. Specifically, we first downsample the cur-
556 rent frame xt and the reference frame x̂t�1 and obtain the corre-
557 sponding low resolution frames xd

t and x̂d
t�1. Then we feed

558 these two frames into Spynet [44] and calculate the flow infor-
559 mation vdt . Finally, v

d
t is upsampled based on the context from

560 high-resolution frames to obtain the pixel-wise motion vt. The
561 architecture of our motion estimation network is illustrated in
562 Fig. 6. Instead of estimating the full resolution optical flowmap
563 directly, our scheme reduces the computational complexity sig-
564 nificantly by performing motion estimation on the down-
565 sampled frames.More detailswill be provided in Section 7.
566 MV Encoder and Decoder Network. In our DVC_Lite frame-
567 work, a lightweight motion compression framework is uti-
568 lized. The new MV compression network is shown in Fig. 7.
569 We feed the optical flow map to a series of convolution
570 operations. The number of channels is set to 16 for all the
571 convolution(deconvolution) layers, except for the last layer,
572 which is set to 2. When compared with our design in Fig. 3,
573 we increase the number of layers but greatly reduce the
574 number of channels, our new framework thus reduces the
575 computational complexity and model size significantly.
576 Motion Compensation Network and Residual Compression
577 Network. To further reduce the computational complexity, it
578 is also required to employ efficient network architecture for
579 motion compensation and residual compression. A straight-
580 forward approach is to reduce the number of channels in
581 the corresponding networks. This simple strategy is very
582 effective to alleviate the computational complexity while
583 maintaining the compression performance. For example,
584 the number of channels in [8] is set to 128 while our
585 DVC_Lite uses a light version by setting this number to 64.
586 One possible explanation is that the residual rt itself is very
587 sparse and even the lightweight network can well compress
588 the residual information.

5896.2 DVC_Pro

590Residual Compression. In the basic DVC model introduced in
591our conference work [25], the image compression frame-
592work in [8] is utilized for residual compression. To further
593improve the coding performance, a more advanced image
594compression scheme [27] is employed. In [27], Minnen et al.
595used auto-regressive and hierarchical priors to improve the
596efficiency of entropy coding. Due to the high flexibility of
597the proposed deep video compression framework, it is also
598straightforward to embed the learning based image com-
599pression method [27] into our framework by replacing the
600corresponding residual encoder and decoder.
601Motion Compression. In our previous conference work [25],
602motion information is compressed by using the factorized
603entropy model, which ignores the spatial relationship in the
604compressed latent space. Therefore, motion compression is
605not very effective. When motion information occupies more
606percentages in the total bitrate (i.e., the low bitrate setting in
607Figs. 11 and 12), the performance of our DVC method drops
608significantly. Inspired by the entropy model in image com-
609pression [27], we also use the auto-regressive model to com-
610press the optical flow information. As shown in Section 7.3
611(see Fig. 19), the new DVC_Pro method achieves much better
612performance than the basic DVC network because the percent-
613age of bits used to encode motion information drops obvi-
614ously, which demonstrates that the new entropy model
615improves the compression performance at low bitrates.
616Motion and Residual Refinement. In the DVC model, the
617reconstructed optical flow map and residual information can
618be obtained by using theMVdecoder net and residual decoder
619net, respectively. Aswe know, the quantization procedurewill
620introduce quantization errors, which means the reconstructed
621optical flow and residual information are not accurate and
622thus have compression artifacts. To further improve the com-
623pression performance, we use twomotion and residual refine-
624ment modules to obtain more accurate motion and residual
625information. These two modules are integrated into the DVC
626framework, which are after the MV decoder net and the resid-
627ual decoder net, respectively. The network architecture of the
628motion refinement network is illustrated in Fig. 8, where v̂0t is
629the refined motion information used for the following motion
630compensation procedure. The network architecture of the
631residual refinementmodule is the same as themotion compen-
632sation network in Fig. 4 except that the residual information is
633used as the input to the network.

Fig. 6. The proposed motion estimation scheme. “D” and “U” represent
the downsampling and upsampling operations, respectively. “C” repre-
sents the concatenation operation. “Conv” is the convolution operation.

Fig. 7. Our MV Encoder-decoder network. Conv(3,16,2) represents the
convolution operation with the kernel size of 3� 3, the output channel of
16 and the stride of 2.

LU ET AL.: END-TO-END LEARNING FRAMEWORK FOR VIDEO COMPRESSION 7
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635 In our conference work [25], we have to train different mod-
636 els at different � values in Eq. (2) to achieve multiple bitrate
637 coding in the practical applications. It means the decoder/
638 encoder needs to store multiple models, which significantly
639 increases the storage burden when deploying the proposed
640 method. In this section, we aim to reduce the number of
641 models for video coding at multiple bitrates by introducing
642 the adaptive quantization layer (AQL).
643 In Fig. 9, we provide an example to illustrate how to inte-
644 grate our adaptive quantization layer to the existing image
645 compression framework [8]. The encoder (resp. decoder) can be
646 the residual encoder (resp. decoder) or the motion encoder
647 (resp. decoder) in our DVC framework. AQL (resp. IAQL) rep-
648 resents the adaptive quantization layer (resp. inverse adaptive
649 quantization layer). AE and AD represent entropy encoder
650 and entropy decoder. The hyper encoder and hyper decoder
651 are used to estimate the corresponding entropy parameters ŝ,
652 which are used in entropy coding. In our implementation, we
653 follow the same strategy in Fig. 9 to integrate the adaptive
654 quantization layer to the motion compression module and
655 residual compressionmodule in our DVC framework.
656 Specifically, in our proposed video compression scheme,
657 we first train a DVC model at high-bitrate without using
658 the adaptive quantization layer. Then all the parameters in
659 the baseline DVC model will be fixed after the training
660 stage. To obtain other models at low-bitrates, we integrate
661 the adaptive quantization layer to the pre-trained baseline
662 DVC model at high-bitrate (see Fig. 9). Finally, we only
663 fine-tune the adaptive quantization layers for other models
664 at different bitrates. Therefore, we only need to store the
665 baseline DVC model at high-bitrate and the corresponding
666 adaptive quantization layers at low-bitrates. In other
667 words, the models at different bitrates share the same base-
668 line DVC model, which reduces the total size of models for
669 multiple bitrates.

670We use a simple network architecture to implement the
671adaptive quantization layer. Take Fig. 9 as an example, the
672compressed features y from the encoder go through the
673adaptive quantization layer before the actual quantization
674procedure. Specifically, we use a four-layer network sð�Þ to
675extract the scale information for the adaptive quantization
676layer (AQL). Then the feature yq after adaptive quantization
677is defined as follows,

yq ¼ y � ð1� sigmoidðsðyÞÞÞ: (4)
679679

680The corresponding inverse adaptive quantization layer
681(IAQL) is formulated as,

ŷ ¼ ŷq � ð1þReluð�sðŷqÞÞÞ; (5)
683683

684

685�sð�Þ adopts the same architecture as sð�Þ and can be used to
686extract the scale information for the inverse adaptive quanti-
687zation layer. The network architecture of sð�Þ is shown in
688Table 1,where C is set to 80 in our implementation.
689In [51], Choi et al. designed a variable bitrate scheme for
690image compression by changing the quantization step in the
691pre-defined range, and the features from different spatial
692locations share the same quantization step. However, the
693quantization step (i.e., scale information) in our approach is
694content adaptive, which is learned from the compressed fea-
695tures. More importantly, our proposed scheme does not
696change the existing baseline architecture, while Choi’s
697approach uses conditional CNNs to replace all the standard
698CNNmodules.
699To evaluate the effectiveness of the proposed adaptive
700quantization layer, we provide the compression performance
701of our DVC_Promethod after using the adaptive quantization
702layers (named as DVC_Pro_AQ) in Fig. 10. It is noted that our
703DVC_Pro_AQ method achieves very similar compression

Fig. 8. The network architecture of our motion refinement network.

Fig. 9. An example of the basic compression network after using the
adaptive quantization layer. “AQL” and “IAQL” represent the adaptive
quantization layer and inverse adaptive quantization layer. “AE” and
“AD” represent the arithmetic encoder and arithmetic decoder.

TABLE 1
The Network Architecture of the Proposed

Adaptive Quantization Layer

Layer1 Layer2 Layer3 Layer4

Conv(1,C,1) DepthConv(5,C,1) DepthConv(5,C,1) Conv(1,M,1)

Conv(1,C,1) represents the convolution layer with the kernel size of 1� 1, the
output channel number of C and the stride of 1. Here, M is the channel number
of the compressed features in the DVC method and is equal to 192.

Fig. 10. Performance comparison between the separately trained
DVC_Pro models and our newly proposed method DVC_Pro_AQ.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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704 performance in most cases when compared with the sepa-
705 rately trainedDVC_Promodels at different bitrates.However,
706 the number of parameters for the adaptive quantization layers
707 in our DVC_Pro_AQ are only 2 percent of that from the
708 full DVC_Pro model, which reduces the storage size for our
709 models significantly.

710 7 EXPERIMENTS

711 7.1 Experimental Setup

712 Datasets. We train the proposed video compression frame-
713 work by using the Vimeo-90k dataset [24], which is recently
714 built for evaluating different video processing tasks, such as
715 video denoising and video super-resolution. It consists of
716 89,800 independent clips that are different from each other
717 in content. The mini-batch size is set as 4 and the resolution
718 of training images is 448� 256.
719 To evaluate the performance of the proposed methods
720 DVC/DVC_Lite/DVC_Pro, the UVG dataset [52], and the
721 HEVC Standard Test Sequences (Class B, Class C, Class D,
722 and Class E) [3] are used for evaluation. These datasets
723 have diversified video content and resolutions, and thus are
724 widely adopted to measure the performance of video com-
725 pression algorithms in the literature.
726 Evaluation Method. To measure the distortion of the
727 reconstructed frames, we use two evaluation metrics: PSNR
728 and MS-SSIM [49]. MS-SSIM correlates better with the
729 human perception of distortion than PSNR. To measure the
730 number of bits for encoding the representations, we use bits
731 per pixel(bpp) to represent the required bits for each pixel
732 in the current frame.
733 In the video compression task, BDBR and BD-PSNR (BD-
734 MSSSIM) [53] are widely used to evaluate the performance of
735 different video compression systems. BDBR represents the
736 average percentage of bit rate savings when compared with
737 the baseline algorithm at the same PSNR (MS-SSIM). BD-PSNR
738 (BD-MSSSIM) represents the performance gain(dB)when com-
739 paredwith the baseline algorithm at the same bit rate.
740 Deep Video Compression Models. There are four algorithm
741 settings in our experiments. Specifically, the three approaches,
742 which are optimized by using mean square error as the dis-
743 tortion metric,are denoted as DVC, DVC_Lite and DVC_Pro.

744Besides, we also report the results of another model that is
745optimized based on MS-SSIM [49], which is denoted as DVC
746(MS-SSIM). For each approach, we train 4 models with differ-
747ent trade-off parameter �. For the MSE based models, the
748parameter � is set to 256, 512, 1024 and 2048, respectively.
749Meanwhile, the corresponding � values for the MS-SSIM
750based models are set to 8, 16, 32 and 64, respectively.

7517.2 Experimental Results

752In this section, both H.264 [2] and H.265 [3] are included for
753comparison. Furthermore, the recent learning based video
754compression system [23], denoted by Wu_ECCV2018, is
755also included for comparison. To generate the compressed
756frames by H.264 and H.265, we follow the setting in [23]
757and use FFmpeg with the veryfast mode.1 For fair compari-
758son, both the proposed approach and the baseline methods
759in Figs. 11, 12, and 13 use the same GoP size. Specifically,
760the GoP size for the UVG dataset and the HEVC dataset are
76112 and 10, respectively.
762PSNR Evaluation. Figs. 11a and 12 show the PSNR based
763rate-distortion performance on the UVG dataset and the
764HEVC standard test sequences (Class B, Class C, Class D,
765Class E), respectively. From Fig. 11a, it is noticed that our
766MSE based models DVC/DVC_Lite/DVC_Pro outperform
767the recent video compression work [23] by a large margin.
768Specifically, the proposed DVC model achieves about 0.6dB
769gain at the same bpp level on the UVG dataset. It should be
770mentioned that our method only uses one previous refer-
771ence frame, while the work by Wu et al. [23] utilizes bidirec-
772tional frame prediction and requires two neighboring
773frames. In other words, our new framework for P-frame
774compression surpasses the B-frame compression method in
775[23]. A possible explanation is that we jointly optimize all

Fig. 11. Performance comparison between our proposed method and the learning based video codec in Wu_ECCV2018 [23], H.264 [2], and H.265
[3] on the UVG dataset.

1. H.264: ffmpeg -pix_fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N
-c:v libx264 -preset veryfast -tune zerolatency -crf Q -g GOP-bf 2 -b_strategy
0 -sc_threshold 0 output.mkv

H.265: ffmpeg -pix_fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N
-c:v libx265 -preset veryfast -tune zerolatency -x265-params ”crf=Q:key-
int=GOP” output.mkv

FR;N;Q;GOP represent the frame rate, the number of encoded
frames, the quality and GOP size, respectively. N is set to 100 for the
HEVC datasets. GOP is set as 10 for the HEVC dataset and 12 for the
UVG dataset.

LU ET AL.: END-TO-END LEARNING FRAMEWORK FOR VIDEO COMPRESSION 9
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776 the components in our framework while the motion infor-
777 mation in [23] is not optimized in an end-to-end fashion.
778 On most datasets, our MSE based model outperforms the
779 H.264 standard when measured by PSNR. It can also be
780 observed that the performance of DVC_Lite is similar to DVC,
781 while DVC_Pro outperforms DVC, especially for the HEVC
782 Class C dataset in Fig. 12. More importantly, the DVC_Pro
783 model even achieves comparable compression performance
784 with H.265 in terms of PSNR, which demonstrates the poten-
785 tial of the learning based video compression approach.
786 In Table 2, we provide the BDBR and BD-PSNR results of
787 H.265 and our proposed methods DVC/DVC_Lite/DVC_Pro
788 when compared with H.264. Specifically, our proposed DVC
789 model saves 19.22 percent bit rate,whileH.265 saves 25.06 per-
790 cent bit rate. However, the advanced model DVC_Pro saves
791 up to 34.57 percent bit rate,which outperformsH.265.
792 We also observe that the DVC_Lite model achieves simi-
793 lar compression performance when compared with the
794 DVC model. However, DVC_Lite only requires 27 percent
795 of the total number of parameters and reduces 76 percent
796 FLOPs. More analysis of the computational complexity is
797 provided in Section 7.4.
798 Evaluations under the Default Setting of H.265. The previ-
799 ous learning based video compression methods [23], [25],
800 [38] use the fixed GoP size when evaluating the perfor-
801 mance between different codecs. To provide a more com-
802 prehensive evaluation, we also compare our method with
803 the default setting of x265,2 where the variable large GoP

804size is utilized. All the video frames in HEVC Class B and
805Class C are used for performance evaluation. From the
806experimental results in Fig. 14, it is observed that the pro-
807posed method can achieve very competitive results on the
808HEVC Class B dataset at high bitrates. Considering that our
809approach does not exploit sophisticated rate control techni-
810ques, multiple reference frames, etc, our method still
811achieves promising results.
812MS-SSIM Evaluation. In Figs. 11b and 13, the MS-SSIM
813based rate-distortion performances are provided. Although
814DVC, DVC_Lite and DVC_Pro are optimized by minimizing
815the MSE, these methods have also achieved promising
816MS-SSIM performance. For example, the rate-distortion
817curves in Fig. 13 show that our MSE based models achieve
818comparable or better compression performance than H.265 in
819terms of MS-SSIM. It demonstrates that our framework can
820generate reconstructed frameswith better perceptual quality.
821For the model optimized based on MS-SSIM, the pro-
822posed DVC(MS-SSIM) method outperforms the H.265/
823H.264 codecs by a large margin when measured by MS-
824SSIM. For example, the DVC(MS-SSIM) method achieves
825more than 0.005 gain in terms of MS-SSIM when compared
826with H.265 on the HEVC Class C dataset. Besides, when
827measured by PSNR, it is also not surprising that the perfor-
828mance of DVC(MS-SSIM) method in Fig. 11a decreases sig-
829nificantly. One possible explanation is that the network
830based on the MS-SSIM criterion prefers to preserve the
831structure of the reconstructed image instead of preserving
832the original pixel intensity, which leads to performance
833drop in terms of PSNR.
834We also provide the BDBR and BD-MSSSIM results in
835Table 3. It is observed that our proposed DVC method can
836save more than 29 percent bit rate over all sequences, while

Fig. 12. Performance(PSNR) comparison between our proposed method and H.264 [2], H.265 [3] on the HEVC dataset.

2. Command line for FFmpeg: ffmpeg -pix_fmt yuv420p -s WxH -r 50 -i
video.yuv -c:v libx265 -tune zerolatency -x265-params “qp=Q” output.mkv Q
is the quantization parameter. W and H are the height and width of the
yuv video.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
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Fig. 13. Performance(MS-SSIM) comparison between our proposed method and H.264 [2], H.265 [3] on the HEVC dataset.

TABLE 2
BDBR(%) and BD-PSNR(dB) Performances of H.265 and Our DVC/DVC_Lite/DVC_Pro Methods When Compared With H.264 on

the HEVC Standard Test Sequences in Terms of PSNR

Sequences H.265 DVC DVC_Lite DVC_Pro

BDBR BD-PSNR BDBR BD-PSNR BDBR BD-PSNR BDBR BD-PSNR

B BasketballDrive -44.37 1.15 -23.17 0.59 -24.91 0.61 -55.09 1.53
BQTerrace -28.99 0.68 -25.12 0.54 -8.11 0.16 -36.62 0.88
Cactus -30.15 0.68 -39.53 0.94 -31.60 0.78 -46.50 1.18
Kimono -38.81 1.19 -40.70 1.23 -39.05 1.28 -52.31 2.09
ParkScene -16.35 0.45 -25.20 0.77 -20.29 0.63 -34.20 1.08

Average -31.73 0.83 -30.75 0.81 -24.79 0.69 -44.94 1.35

C BasketballDrill -35.08 1.69 -24.47 1.05 -22.22 0.96 -35.48 1.75
BQMall -19.70 0.84 26.13 -0.72 24.74 -0.75 -20.77 0.93
PartyScene -13.41 0.60 -9.14 0.29 -5.24 0.16 -18.14 0.81
RaceHorses -17.28 0.69 -8.06 0.19 -3.49 0.12 -27.79 1.13

Average -21.37 0.96 -3.88 0.20 -1.55 0.12 -25.54 1.15

D BlowingBubbles -12.51 0.50 -17.79 0.62 -10.94 0.36 -26.19 1.09
BasketballPass -19.26 0.99 -0.39 -0.01 7.28 -0.31 -20.60 1.02
BQSquare -3.49 0.14 -1.60 0.01 5.40 -0.25 -17.96 0.82
RaceHorses -14.77 0.68 -18.95 0.72 -7.63 0.34 -30.17 1.51

Average -12.51 0.58 -9.68 0.34 -1.47 0.04 -23.73 1.11

E Vidyo1 -37.12 1.11 -36.05 1.20 -29.10 0.88 -44.09 1.67
Vidyo3 -34.99 1.23 -32.58 1.25 -25.37 0.86 -41.02 1.72
Vidyo4 -34.71 1.05 -30.84 1.03 -26.51 0.86 -46.25 1.73

Average -35.61 1.13 -33.16 1.16 -26.99 0.87 -43.79 1.72
Average Over All
Sequences

-25.06 0.85 -19.22 0.61 -13.56 0.42 -34.57 1.31

The best result in each row is highlighted in bold.

LU ET AL.: END-TO-END LEARNING FRAMEWORK FOR VIDEO COMPRESSION 11
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838 based method DVC(MS-SSIM) saves up to 45.88 percent bit
839 rate when compared with H.264. Based on the results from
840 Tables 2 and 3, it clearly demonstrates that our proposed
841 method outperforms H.264 in terms of PSNR and MS-SSIM.
842 To further demonstrate the effectiveness of the proposed
843 approach, we also compare our DVC method with the lat-
844 est learning based approaches [38], [54] on the VTL [55]
845 and Xiph [56] datasets. The experimental results are shown
846 in Fig. 15 and it is observed that our approach outperforms
847 these approaches by a large margin. For example, when
848 compared with Cheng’s approach [38] at 0.25bpp, our
849 DVC model achieves 0.005 improvements in terms of MS-
850 SSIM and reduces 25 percent bitrate when evaluated based
851 on BDBR.
852 Qualitative Comparison. In Fig. 16, the reconstructed
853 frames from different video compression algorithms are
854 provided. Specifically, when compared with H.264/H.265,
855 our DVC method generates high-quality reconstructed

856frames at the same bpp level. For example, our DVC
857method can generate a clear contour of the digital number
858in the top row of Fig. 16, while other methods generate
859more blurry contour.

8607.3 Ablation Study and Model Analysis

861In this section, we provide the ablation study of our pro-
862posed DVCmethod.
863Motion Estimation. In our proposed method, we exploit the
864advantage of the end-to-end training strategy and optimize the
865motion estimation module within the whole network. There-
866fore, based on rate-distortion optimization, the optical flow
867map in our system is expected to bemore compressible, leading
868to more accurate warped frames. To demonstrate the effective-
869ness, we perform an experiment by fixing the parameters of the
870initialized motion estimation module in the whole training
871stage. In this case, the motion estimation module is pre-trained
872only for estimating accurate optical flow, but not for optimal
873rate-distortion. The experimental result in Fig. 17 shows that

Fig. 14. Results of our DVC_Pro method and H.265 (with the default set-
ting in FFmpeg) on the HEVC dataset.

TABLE 3
BDBR(%) and BD-MSSSIM(dB) Performances of H.265 and our DVC/DVC_Lite/DVC_Pro Methods When

Compared With H.264 on the HEVC Standard Test Sequences in Terms of MS-SSIM

Sequences H.265 DVC DVC_Lite DVC_Pro DVC(MS-SSIM)

BDBR BD-MSSSIM BDBR BD-MSSSIM BDBR BD-MSSSIM BDBR BD-MSSSIM BDBR BD-MSSSIM

B BasketballDrive -39.80 0.87 -22.21 0.51 -23.84 0.50 -52.55 1.40 -48.99 1.16
BQTerrace -25.96 0.50 -19.52 0.36 -2.00 -0.11 -26.39 0.48 -43.21 0.99
Cactus -26.93 0.47 -41.71 0.86 -35.36 0.72 -47.84 1.01 -53.69 1.22
Kimono -35.31 0.97 -33.00 0.92 -31.67 0.92 -46.11 1.69 -51.27 1.53
ParkScene -13.54 0.29 -29.02 0.77 -24.47 0.64 -35.93 1.03 -44.76 1.29

Average -28.31 0.62 -29.09 0.68 -23.46 0.53 -41.76 1.12 -48.39 1.24

C BasketballDrill -34.04 1.41 -27.18 1.18 -24.07 1.03 -34.64 1.77 -43.54 2.21
BQMall -17.57 0.60 -18.85 0.67 -15.51 0.54 -32.07 1.41 -40.17 1.75
PartyScene -13.36 0.53 -37.18 1.61 -32.39 1.43 -37.41 1.90 -41.09 2.08
RaceHorses -17.01 0.57 -29.24 1.05 -22.98 0.84 -37.97 1.59 -43.28 1.89

Average -20.50 0.78 -28.11 1.13 -23.74 0.96 -35.52 1.67 -42.02 1.98

D BlowingBubbles -10.28 0.35 -35.44 1.53 -29.79 1.25 -38.89 1.70 -46.53 2.20
BasketballPass -17.98 0.85 -20.53 1.01 -14.54 0.65 -28.44 1.68 -43.28 2.60
BQSquare 5.90 -0.19 -23.67 0.84 -14.59 0.52 -23.27 1.05 -28.14 1.86
RaceHorses -13.23 0.56 -29.79 1.30 -20.14 0.89 -34.93 1.87 -46.32 2.39

Average -8.89 0.39 -27.36 1.17 -19.76 0.83 -31.38 1.58 -41.07 2.26

E Vidyo1 -31.67 0.55 -36.80 0.72 -21.39 0.33 -33.97 1.00 -56.73 1.22
Vidyo3 -29.48 0.65 -40.09 1.02 -19.46 0.35 -39.83 1.29 -53.87 1.51
Vidyo4 -27.41 0.61 -24.84 0.66 -14.51 0.34 -37.04 1.15 -49.19 1.33

Average -29.52 0.61 -33.91 0.80 -18.45 0.34 -36.95 1.15 -53.26 1.35

Average Over All
Sequences

-21.73 0.60 -29.32 0.94 -21.67 0.68 -36.70 1.38 -45.88 1.70

The best result in each row is highlighted in bold.

Fig. 15. Evaluation results with the state-of-the-art methods Cheng [38]
and Waveone [54] on the VTL and Xiph datasets.
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874 our approach with the joint training strategy can improve the
875 performance significantly when compared with the approach
876 by fixing the motion estimation module, which is denoted by
877 W/O Joint Training in Fig. 17 (see the blue curve).
878 We also report the average bit costs for encoding the opti-
879 cal flow maps and the corresponding PSNR of the warped
880 frame in Table 4. It is observed that we can obtain a higher
881 quality warped frame with fewer bits cost by using the opti-
882 cal flow map based on the joint training strategy. Specifi-
883 cally, when the motion estimation module is fixed during
884 the training stage, it needs 0.044bpp to encode the generated
885 optical flow map and the corresponding PSNR of the
886 warped frame is 27.33db. In contrast, we need 0.029bpp to
887 encode the optical flow map in our proposed method, and
888 the PSNR of the warped frame is 28.17dB, which is higher.
889 Therefore, the joint learning strategy not only saves the
890 number of bits required for encoding motion information
891 but also improves the warped image quality. These

892experimental results clearly show that video compression
893performance can be improved by putting the motion esti-
894mation module into rate-distortion optimization.
895Motion Estimation Based on Downsampled Frames. In Sec-
896tion 6.1, we propose an efficient optical flow estimation net-
897work based on the downsampled frames to reduce the
898computational complexity while achieving high-quality
899motion estimation results. Our scheme upsamples the esti-
900mated optical flow maps based on the context information
901from high resolution frames. To demonstrate the effectiveness
902of such context information,we also perform a newexperiment
903by removing the context information. Specifically, the optical
904flow maps based on downsampled frames will be upsampled
905by bilinear interpolation and compressed by the following
906motion compression network. Although the encoding speed
907can be improved by 15 percent after removing such context
908information, the coding performance drops more than 0.4 dB.
909Therefore, it is necessary to use context information from high
910resolution frameswhen performing the upsampling operation.
911Motion Compensation. In this work, the motion compensa-
912tion network is utilized to refine the warped frames. Since
913the motion estimation module may generate unreliable opti-
914cal flow map, it is necessary to refine the warped frames. To
915evaluate the effectiveness of this module, we perform
916another experiment by removing the motion compensation
917network in the proposed system. Specifically, we use the
918warped frame ~xt in Eq. (1) as the predicted frame �xt without
919using the CNN network for refinement. Experimental
920results of this alternative approach, which is denoted by W/
921O MC (see the green curve in Fig. 17), show that the PSNR
922without the motion compensation network drops by 1.0 dB
923at the same bpp level.

Fig. 16. Qualitative comparison. The reconstructed frames are from H.264, H.265, and our DVC method. Our method either achieves better visual
quality or uses fewer bits.

Fig. 17. Ablation study. We report the compression performance in
the following settings. 1. The strategy of buffering the previous frame is
not adopted(W/O update). 2. Motion compensation network is removed
(W/O MC). 3. Motion estimation module is not jointly optimized (W/O
Joint Training). 4. Motion compression network is removed (W/O MVC).
5. Without relying on motion information (W/O Motion Information).

TABLE 4
The Bit Cost for Encoding Optical Flow Maps and
the Corresponding PSNR of the Warped Frame

W/O Joint Training W/OMVC DVC

Bpp PSNR Bpp PSNR Bpp PSNR

0.044 27.33 0.200 24.43 0.029 28.17

LU ET AL.: END-TO-END LEARNING FRAMEWORK FOR VIDEO COMPRESSION 13
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924 Updating Strategy. In the training stage for our proposed
925 method, the previous reconstructed frame is required for
926 encoding the current frames. To address this issue, we use
927 an online buffer in Section 5 to store previously recon-
928 structed frames in the training stage when encoding the cur-
929 rent frame xt. To demonstrate the effectiveness of the
930 proposed scheme, we also report the compression perfor-
931 mance when the previous reconstructed frame x̂t�1 is
932 directly replaced by the previous original frame xt�1 in the
933 training stage. This result of this alternative approach,
934 which is denoted by W/O update (see the red curve), is
935 shown in Fig. 17. It is observed that the buffering strategy
936 can improve the performance at the same bpp level. One
937 explanation is that updating strategy can generate accurate
938 reference frames, which benefits the training procedure.
939 MV Encoder and Decoder Network. In our proposed frame-
940 work, we design a CNN model to compress the optical
941 flow and encode the corresponding motion representa-
942 tions. It is also feasible to directly quantize the raw optical
943 flow values and encode them without using any CNN.
944 Specifically, we perform a new experiment by removing
945 the MV encoder and decoder network. The experimental
946 result in Fig. 17 shows that the PSNR of the alternative
947 approach, which is denoted by W/O MVC (see the magenta
948 curve ), drops by more than 2 dB after removing the
949 motion compression network. Besides, the bit cost for
950 encoding the optical flow map in this setting and the corre-
951 sponding PSNR of the warped frame are also provided in
952 Table 4 (denoted by W/O_MVC). It is noticed that it
953 requires much more bits (0.200 Bpp) to directly encode
954 raw optical flow values and the corresponding PSNR(24.43
955 dB) is much worse than our proposed method(28.17 dB).
956 Therefore, motion compression is crucial when optical
957 flow is used in the learning based video codec.
958 Motion Information. To demonstrate the effectiveness of
959 motion information for video compression, we also investi-
960 gate the alternative approach, which only retains the resid-
961 ual encoder and decoder network. As shown in Fig. 17,
962 when treating each frame independently without using any
963 motion estimation approach (see the yellow curve denoted
964 by W/O Motion Information, the PSNR performance drops
965 more than 2dB when compared with our baseline method.
966 Bit Rate Analysis. In this paper, we use a probability esti-
967 mation network in [8] to estimate the bit rate for encoding

968motion and residual information. To verify the reliability,
969we compare the estimated bit rate and the actual bit rate by
970using arithmetic coding in Fig. 18. It is observed that the
971estimated bit rate is close to the actual bit rate, which leads
972to accurate rate-distortion optimization. Furthermore, we
973investigate the two parts in the rate-distortion function in
974Eq. (2). In Fig. 19, we provide the � value and the percentage
975of motion information at each point. When the parameter �
976in our objective function �DþR becomes larger, the whole
977bpp also becomes larger while the corresponding percent-
978age of bits used for encoding motion information drops. In
979other words, our video compression framework will use
980more bits to encode the residual at a high bit rate.

9817.4 Computational Complexity Analysis

982The computational complexity and compression efficiency
983are the two most important metrics for practical video com-
984pression systems. In this section, we provide an in-depth
985analysis of computational complexity for the proposed
986methods DVC/DVC_Lite/DVC_Pro.
987Encoding Speed. To compare the computational complex-
988ity of different video compression systems, we perform sev-
989eral experiments by using the server with Intel Xeon E5-
9902640 v4 CPU and a single GTX 1080Ti GPU. Specifically, we
991include the two official reference software JM [57] and HM
992[58], two practical commercial software x264 [59] and x265
993[60], the learning based methods from [23] and our pro-
994posed methods DVC/DVC_Lite/DVC_Pro. The experimen-
995tal results are provided in Fig. 20. For the video sequences
996with the resolution of 1920x1080, the encoding speeds of JM
997and HM are 0.14fps and 0.02fps, respectively. In contrast,
998the encoding speed of our DVC_Light model is 3.33fps,
999which is 23.7 times faster than JM and 166 times faster than
1000HM. Experimental results in Fig. 20 also demonstrate that
1001our DVC_Lite is 2 times faster than the DVC method in
1002[25]. Considering that the DVC_Lite method achieves simi-
1003lar coding performance as the DVC method, it demonstrates
1004the effectiveness of our newly proposed motion estimation
1005and motion compression networks. The encoding speed of
1006our DVC_Pro is 1.35fps.
1007Besides, the practical video codecs x264 and x265 have
1008different coding settings to balance the coding efficiency
1009and encoding speed. For example, when the coding effi-
1010ciency is given higher priority for video codecs, the

Fig. 18. Comparison between the actual bitrate through arithmetic
entropy coding and the estimated bit rate in our network at different
bpps.

Fig. 19. Percentages of bits used to encode motion information at differ-
ent bpps. (�, p) represent the trade-off parameter in Eq. (2) and the
percentage of bits used to encode motion information, respectively.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE



IEE
E P

ro
of

1011 corresponding speeds are 4.06fps(x264_S) and 0.73fps
1012 (x265_S), which are similar to our DVC/DVC_Lite model.
1013 For the faster setting in x264 and x265, the encoding speed
1014 can be up to 109fps and 16fps, respectively.
1015 It should be mentioned that both x264 and x265 are devel-
1016 oped based on the highly parallel framework and use the
1017 assembly optimization techniques, which lead to the state-of-
1018 the-art encoding speed. Recently, a lot of deepmodel accelera-
1019 tion techniques, such asmodel pruning ormodel quantization,
1020 have been widely used to improve the inference time and
1021 reduce model size. Therefore, it is possible to further improve
1022 the speed of ourmethod by using the latest techniques.
1023 We also provide the encoding speed of Wu’s framework
1024 [23] in Fig. 20. Since the progressive coding scheme is uti-
1025 lized in [23], the coding speed changes for different target
1026 bitrate, i.e., different iterations. For the high bitrate, denoted
1027 as ECCV@0.625, the corresponding coding speed is 0.25fps,
1028 while our DVC_Lite is 13.2 times faster. For the low bitrate,
1029 denoted as ECCV@0.125, the encoding speed is 1.28fps, and
1030 DVC_Lite is about 2.6 times faster in speed.
1031 In addition, another advantage of our proposed model is
1032 the complexity invariance. Specifically, for the given video
1033 sequence with specific resolution, the encoding speed of

1034our model keeps constant irrespective of the target bitrate
1035or the video content. However, as shown in Fig. 21, the
1036encoding speed of the learning based method [23] and the
1037traditional video codecs vary a lot for different bitrates. Due
1038to the existing mode decision scheme in the traditional
1039video codecs, the corresponding encoding speed also varies
1040for different video content even at the same bitrate.
1041Model Complexity. In Table 5, we provide the parameters
1042and FLOPs of our proposed method. Specifically, for the
1043video sequence with the resolution of 384x192, the corre-
1044sponding parameters and FLOPs of our DVC method are
104510.1M and 154.7GFLOPs. In comparison with DVC, the
1046parameters and FLOPs of the newly proposed DVC_Lite
1047are 2.7M (73 percent reduction) and 36.9GFLOPs (76 percent
1048reduction), respectively. For the DVC_Pro model, the param-
1049eters and FLOPs are 29.4M and 294.6GFLOPs. Furthermore,
1050we also provide the trainable parameters and FLOPs for the
1051learning based image codec [8]. It can be observed that the
1052FLOPs of DVC_Lite are comparable with the image codec in
1053[8] (36.9GFLOPs vs. 29GFLOPs). However, our model is
1054much smaller (2.7M vs. 11.8M). The results demonstrate the
1055efficiency of our proposed video compression codec.
1056When comparing DVC_Lite with DVC, the reduction
1057ratios of each sub-network are illustrated in Fig. 22. Specifi-
1058cally, the proposed motion estimation scheme based on the
1059downsampled frames can reduce up to 92 percent FLOPs
1060when compared with the original motion estimation network
1061in [25]. Instead of usingGDN [5] and building a large-capacity
1062network to compress the motion information, we find that a
1063lightweight and efficient network is good enough to compress
1064the motion information, which leads to 74 percent reduction
1065in themodel size. Besides,we also reduce the channel number
1066of the motion compensation network and the residual com-
1067pression network to decrease the computational complexity.
1068For example, we reduce the channel number of the residual
1069compression network from 128 to 64 and obtain 83 percent
1070reduction in FLOPs.

10718 CONCLUSION

1072In this paper, we have proposed the fully end-to-end deep
1073learning framework for video compression. Our framework
1074inherits the advantages of both classic predictive coding
1075scheme in the traditional video compression standards and
1076the powerful non-linear representation ability from DNNs.
1077Experimental results show that our approach outperforms
1078the widely used H.264 video compression standard and the
1079recent learning based video compression system. The work
1080provides a promising framework for applying deep neural
1081networks for video compression. Based on the proposed
1082framework, new state-of-the-art methods for optical flow

Fig. 20. Encoding speed of different video codecs.

Fig. 21. Encoding speed of different video codecs for different video con-
tents and bpps. x265_SeqA and x265_SeqB represent the speed of
x265 codec (the slower setting) for different video sequences at various
bitrates.

TABLE 5
The Trainable Parameters and FLOPs for Different Models

Methods Parameters FLOPs

DVC 10.1M 154.7G
DVC_Lite 2.7M 36.9G
ImageCodec 11.8M 29.0G

ImageCodec represents the learning based image codec in [8] (the number of
channels in the bottleneck layer is set to 320).
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1083 estimation, image compression, bi-directional prediction,
1084 and rate control can be readily plugged into this framework.
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