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Abstract—Video compression algorithms are widely used to
reduce the huge size of video data, but they also introduce
unpleasant visual artifacts due to the lossy compression. In
order to improve the quality of the compressed videos, we
proposed a deep non-local Kalman network for compression
artifact reduction. Specifically, the video restoration is modeled
as a Kalman filtering procedure and the decoded frames can be
restored from the proposed deep Kalman model. Instead of using
the noisy previous decoded frames as temporal information, the
less noisy previous restored frame is employed in a recursive
way, which provides the potential to generate high quality
restored frames. In the proposed framework, several deep neural
networks are utilized to estimate the corresponding states in
the Kalman filter and integrated together in the deep Kalman
filtering network. More importantly, we also exploit the non-local
prior information by incorporating the spatial and temporal non-
local networks for better restoration. Our approach takes the
advantages of both the model-based methods and learning-based
methods, by combining the recursive nature of the Kalman model
and powerful representation ability of neural networks. Extensive
experimental results on the Vimeo-90k and HEVC benchmark
datasets demonstrate the effectiveness of our proposed method.

Index Terms—Video Compression Artifact Reduction, Deep
Neural Network, Kalman Model, Recursive Filtering, Video
Restoration

I. INTRODUCTION

Considering the increasing amount of video data over the
Internet, compression algorithms (e.g., H.264 and HEVC) [1]–
[3] have been applied to reduce the storage size and band-
width. However, these algorithms also introduce compression
artifacts, such as blocking, blurring and ringing artifacts. In
order to obtain high quality images/videos at the decoder side,
a lot of compression artifact reduction algorithms have been
proposed to generate artifact-free images in the past decades.

Previously, manually designed filters [4], [5] and sparse
coding based methods [6]–[9] are proposed to solve this
problem. Recently, learning based approaches have been suc-
cessfully applied to a lot of computer vision tasks [10]–
[20], such as super-resolution [15], [16], denoising [17] and
artifact reduction [18]–[20]. In [18], the convolutional neural
networks (CNN) are firstly utilized for image compression
artifact reduction, which demonstrates the effectiveness of
CNN model.
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Fig. 1. Different methodologies for video artifact reduction (a) the traditional
pipeline without considering previous restored frames. (b) our Kalman filtering
pipeline. Exploiting the temporal information by (c) flow based image warp
and (d) our non-local operation. wi and wj represent the non-local weight.

In this paper, we propose a deep non-local Kalman filtering
network for video compression artifact reduction and our
motivations are two-fold. First, the restoration process for
the current frame can benefit from the previous restored
frames. It is expected that the previous restored frame can
provide more accurate temporal information compared with
the original decoded frame. Therefore, we can employ more
precise temporal information from previous restored frames
and build a robust video artifact removal system with high
performance. It is obvious that the dependence of previous
restored frames will lead to a dynamic recursive solution for
video artifact removal. More importantly, this scheme provides
the opportunity to utilize long term temporal information
through the recursive pipeline. As we know, most learning
based approaches [16]–[19], [21] for artifact reduction focus
on image artifact reduction. Although the temporal information
is utilized in video artifact reduction [22] or video super-
resolution [23]–[25], each frame is restored separately (see
Fig. 1(a)) without considering the previous restored frames.
In summary, we aims to build a dynamic filtering scheme (see
Fig. 1(b)) to exploit accurate temporal information in previous
frame for high quality restoration.

Second, spatial/temporal non-local prior information is ben-
eficial for image/video restoration task. In the past decades,
non-local prior has been successfully applied to image restora-
tion tasks (e.g., image denoising [26] and image super-
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resolution [8]). However, it is still unclear how to utilize
this powerful information for the learning based approach,
especially for video restoration. More importantly, motion clue
is crucial for the video restoration task. Most learning based
video restoration approaches [22], [24] tried to use the optical
flow to align the temporal neighbour frames for reconstruction
(see Fig. 1(c)). Therefore, the quality of restored frame heavily
rely on the accuracy of estimated optical flow and may degrade
for the complex regions. At the same time, the non-local
prior can capture the similarity between two neighbouring
frames and can be used as an implicit approach to utilize
the motion clue (see Fig. 1(d)), which is more robust and
lightweight. Therefore, it is feasible to enhance the restoration
by employing the non-local prior information.

In this paper, a deep non-local Kalman filtering network
is proposed for video compression artifact reduction. Our
proposed framework is designed as a post-processing module
and can be easily extended to different compression algo-
rithms. Specifically, the video artifact reduction is formulated
as a Kalman filtering procedure, which means the decoded
frame can be refined recursively by utilizing the information
propagated from previous restored frames. In our deep non-
local Kalman model, two CNN based neural networks (i.e.,
prediction network and measurement network) are proposed to
perform Kalman filtering procedure. The prediction network
tries to calculate prior estimation based on the previous
restored frame, while the measurement network aims at obtain-
ing the measurement through the current decoded frame. Both
prediction network and measurement network incorporate the
spatial/temporal non-local prior information by utilizing the
well-designed non-local network. Then the prior estimation
and the measurement are combined together in the Kalman
framework to reduce the artifacts and restore the current frame.
Our framework integrates the recursive nature of the Kalman
filtering and highly non-linear transform ability of neural
network, which bridges the gap between model-based method
and learning-based method. To the best of our knowledge, this
is the first deep neural network under Kalman model for video
artifact reduction.

In summary, the main contributions of our paper are two-
fold. First, the video artifact reduction is formulated as a
Kalman filtering process, which leads to a recursive restoration
procedure for the decoded frames. Several CNN models are
employed to predict and update the state in the Kalman
filtering procedure. Second, we employ the non-local network
to exploit the powerful prior information in spatial/temporal
domain for robust estimation. Extensive experimental results
validate the effectiveness of our proposed framework for video
compression artifact reduction.

The proposed framework builds upon our previous method
in [27], we make the following notable improvements. First,
we utilize the non-local network to exploit the spatial and
temporal prior information and improve the quality of restored
frames. Second, our proposed framework does not rely on
task-specific prior information as [27] and is successfully
extented to other video restoration task (e.g., video denoising)
in this paper. Third, we provide the in-depth analysis and more
experimental results to demonstrate the effectiveness of our

framework.

II. RELATED WORK

A. Single Image Compression Artifact Reduction

In the past decades, a lot of methods have been proposed to
reduce the artifacts introduced by compression. In [28], [29],
the hand-crafted filters are proposed for reducing blocking
and ringing artifacts. Although these methods utilized sophis-
ticated designed filters, the decoded frames are still far from
satisfactory. In order to improve the performance for artifact
reduction, the sparse coding technique is also widely utilized
[8], [9], [30]. For example, Chang et al. [8] employed sparse
coding and tried to learn powerful representations to reduce the
compression artifacts. In [30], Wang et al. built a deep dual-
domain based fast restoration model by leveraging the large
capacity of deep networks and problem-specific knowledge.

Recently, a lot of convolutional neural network based meth-
ods have been proposed for the low-level vision tasks, such as
super-resolution, denoising and artifact reduction. For exam-
ple, a CNN based neural network (ARCNN) for JPEG artifact
reduction was proposed in [18]. Inspired by ARCNN, various
techniques (such as residual learning [31], skip connection
[31], [32], batch normalization [17], perceptual loss [33],
residual block [20] and generative adversarial network [20])
have been employed to generate high quality reconstructed
frames. In [17], a 20-layer neural network by using batch
normalization and residual learning was proposed for both de-
noising and other low-level vision tasks. In [16], Tai et al. built
a memory persistent network based on a recursive unit and a
gate unit for image restoration task. It should be mentioned
that a lot of works [34]–[36] also tried to learn the image prior
by using CNN and embedded the prior information into the
traditional pipeline for image restoration. Venkatakrishnan et
al. [37] built on the ADMM [38] algorithm and proposed to
replace the proximal operator of the regularizer with a denoiser
such as BM3D [39], which motivates subsequent works to
learn the proximal operator using CNNs [34], [35].

B. Deep Learning for Video Restoration

In addition to the methods for image restoration, a lot of
CNN based methods [22], [23], [40]–[42] have been proposed
for video restoration. In [40], the optical flow was utilized
to generate an ensemble of super-resolution draft, then the
high resolution frame was restored from all drafts by a CNN
model. In [41], Kappeler et al. also estimated the optical flow
and then the corresponding patches were selected to generate
the high resolution frame. Jaderberg et al. proposed the spatial
transformation network (STN) to actively spatially transform
feature maps. Inspired by this idea, several works [22]–
[25] used the optical flow(transform parameters) to perform
motion compensation and employed the aligned reference
frames to increase the temporal coherence for high quality
video super-resolution. For example, Liu et al. [9] aligned the
reference frames and fused different temporal neighbouring
frames through a multiple stream network. In [23], Tao et al.
proposed a sub-pixel motion compensation scheme to obtain
finer motion representation for video restoration. In [22], Xue
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et al. observed that the optical flow itself is not tailored for
video restoration task, and used a joint training strategy to
optimize the optical flow and the following video restoration
network, which leads to state-of-the-art results. Recently,
Wang et al. [43] used a pyramid, cascading and deformable
(PCD) convolution module to align the neighboring frames
to current frames. The PCD will learn the offset to align the
feature through deformable convolution, while our method use
non-local module to achieve the temporal alignment.

For video artifact reduction, several approaches have been
proposed [21], [44]–[46]. Dai et al. proposed the VRCNN
for intra coding artifact reduction in [44]. Yang et al. built
a decoder side CNN for video artifact reduction in [21] and
tried to use temporal information in [46]. In [47], Guan et al.
used bidirectional long short-term memory module to obtain
the peak quality frames and employed these two high quality
frames to restore current frame. Both [47] and our proposed
method try to use more accurate temporal information to
reduce the compression artifact. The difference is that our
method utilized previous restored frame in a recursive way
while Guan et al. selected two best neighbouring frames in
compressed videos.

Instead of employing the single image for compression
artifact reduction, the video restoration methods try to ex-
ploit temporal information. However, these methods only
use noisy/low-resolution videos separately without building a
recursive pipeline by employing the previous restored frames.
In other words, these methods cannot use the more accurate
temporal information to improve the performance. Although
the work [48], [49] try to combine deep neural network
and Kalman filter, they are not designed for the image/video
enhancement tasks. In our previous work [27], we use deep
Kalman network for video restoration. However, the prediction
residual is required in [27], which means the framework in
[27] is not easy to extended to other related video restoration
task (such as video denoising). More importantly, the motion
estimation/compensation is not exploited in [27]. In this paper,
we do not rely on the task-specific prior information and
employ the temporal non-local network to implicitly obtain
the motion information.

C. Non-local Prior based Image Restoration

Non-local prior has been widely used in image restoration
[26], [39]. In [26], non-local means method calculates the
weights of all pixels in an image and removes the noise by
weight averaging the pixels. Recently, Wang et al. proposed a
non-local neural network for video action recognition [50]. Liu
et al. proposed to utilize non-local network for image restora-
tion [51]. However, their method only considers the prior
information in spatial domain, while the temporal information
is also very important for video restoration task. In [52], a
non-local patch search module is integrated into the deep
neural network to exploit the non-local prior for image/video
denoising. [53] follows the similar idea and extended this
scheme for CT image. Specically, the scheme in [52], [53]
first performs non-local search on the image level (based
on raw pixel value) and select n most similar neighbors to

construct a new feature vector for restoration. In contrast, we
use the extracted feature to compute the similarity between
neighboring frame and current frame. And instead of selecting
n similar neighbors, our approach try to use all features in
the search window and combine them based on the estimated
similarity.

III. METHODOLOGY

In this section, we first provide the basic knowledge of
Kalman filter and then formulate the video compression ar-
tifact reduction task as a Kalman procedure and introduce the
corresponding network design.

Introduction of Denotations Let V =
{X|X1, X2, ..., Xt−1, Xt, . . .} denote an uncompressed
video sequence, where Xt ∈ Rmn×1 is a video frame at
time step t and mn represents the spatial resolution. In order
to simplify the description, we only analyze video frame
with a single channel, although we restore the video with
3 channels (RGB or YUV) in our implementation. After
compression, Xc

t represents the decoded frame of Xt. X̂−
t is

the prior estimation and X̂t denotes the posterior estimation
for restoring Xt from the decoded frame Xc

t .

A. Brief Introduction of Kalman Filter

In the past decades, Kalman filter is widely used to estimate
the states of a dynamic system [54]. The Kalman filter builds
a recursive pipeline to estimate the state (e.g., speed or pixel
intensity value) according to the observed measurements. In
the proposed framework, we assume that the original frame
in uncompressed video is the to-be-estimated internal state,
while the compressed frames are the measurements.

1) Preliminary Formulation: One basic assumption in
Kalman model is that state Xt at time t can be obtained based
on the state Xt−1 at time t− 1 in the following way,

Xt = AtXt−1 + wt−1, (1)

where we define At as the transition matrix at time t and
wt−1 represents the process noise for Kalman filter. In the
basic Kalman model, we can also get the measurement Zt for
the true state Xt as follows,

Zt = HXt + vt, (2)

where we use H to represent the measurement matrix and vt is
the corresponding measurement noise. In addition, the system
may be non-linear in practical application, which means it
is necessary to formulate the non-linear relationship between
state Xt−1 and Xt in the transition process. Namely,

Xt = f(Xt−1, wt−1), (3)

where f(·) represents the non-linear transition model.
In summary, we use Eq. (1) and Eq. (2) to describe the linear

Kalman procedure while the non-linear Kalman procedure is
formulated by Eq. (3) and Eq. (2).
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2) Kalman Filtering: Generally, there are two steps in the
Kalman filtering model: the prediction step and the update
step.

In the prediction step, based on the posterior estimation in
previous time step, we can estimate the prior estimation for
current time step. Take the non-linear Kalman model as an
example, the prediction step can be formulated in the following
way,

Prior state estimation: X̂−
t = f(X̂t−1, 0), (4)

Covariance estimation: P−
t = AtPt−1A

T
t +Qt−1, (5)

where Qt−1 represents the covariance of the process noise
wt−1 at time t − 1, and P−

t is the corresponding covariance
matrix to update the Kalman gain and posterior estimation.
In Kalman model, At is the transition model that describes
the relationship between Xt and Xt−1. For the non-linear
model, we usually uses the Jacobian matrix of f(·) to es-
timate At [55]. Namely, At = ∂f(X̂t−1,0)

∂Xt
. For the linear

Kalman model, the prediction step is directly formulated as
f(X̂t−1, 0) = AtX̂t−1.

In the update step, the Kalman model will generate the
posterior estimate by combining both the prior estimate from
the prediction step and the measurement, which provides
the potential to use more complementary information. More
details will be discussed in Section III-G.

Fig. 2(a) provides the overall architecture of the Kalman
model. Specifically, in the prediction step, a prior state es-
timation X̂−

t at time t is calculated based on the estimated
state X̂t−1 at time t − 1. Then the Kalman model will fuses
the prior estimation X̂−

t and the measurement Zt based on
the Kalman gain in the update step. In order to restore the
whole video sequences, we perform these two procedures at
each time steps.

B. Overview of our Deep Non-local Kalman Filtering Network

Fig. 2(b) illustrates the architecture of the proposed Non-
local Kalman filtering network. In our proposed framework,
we use the prediction network to estimate the prior estima-
tion X̂−

t based on the previous restored frame X̂t−1 and
the decoded frame Xc

t . The measurement network is also
employed to generate the measurement Zt for current frame.
After that, we follow the Kalman procedure and get the final
the posterior estimation X̂t by combining the prior estimation
and measurement.

Compared with the basic Kalman model in previous section,
there are three main differences, which are summarized as
follows,

First, we use the temporal non-local residual network as
the non-linear function f(·) in Eq. (3) to obtain the prior
state estimation. It should be mentioned that both the previous
restored frame X̂t−1 and the decoded frame Xc

t are used as
the input for the proposed temporal non-local residual network.
The final prior estimate will depend on X̂t−1 and Xc

t . More
details are provided in Section III-D.

Second, we approximate the transition matrix At in Eq. (5)
by using a linearization network. In order to obtain the

transition matrix At for the non-linear Kalman model, we
usually have to calculate the Jacobian matrix of the non-linear
function f(·). However, it will increase the computational
complexity significantly. In our approach, instead of calcu-
lating the Jacobian matrix for each pixel location, we use an
alternative method by employing the linearization to estimate
the transition matrix At through neural network. Details are
given in Section III-E.

Third, in the update procedure, we use a spatial non-local
residual network to generate the measurement. In comparison,
the conventional Kalman filter might directly use the decoded
frame with compression artifacts as the measurement. Details
are given in Section III-F.

C. Non-local Block

We first introduce the non-local block. The non-local oper-
ation can be generalized as follows,

Rzi =
1

K(Rx, Ry)
∑
j

w(Rxi , R
y
j )g(R

y
j ) (6)

where Rx is the input feature, Ry is the reference feature
and Rz is the output feature. i, j represent the indexes. Rxi
and Ryj represent the feature vectors at location i and j. The
pairwise function w(·) represents the relationship between Rxi
and Ryj . K(·) represents the sum of pairwise function w(·), i.e.,
K(Rx, Ry) =

∑
j w(R

x
i , R

y
j ). The function g(·) computes the

representation of Ryj .
In the traditional non-local means algorithm, g(·) is the

identity mapping. In our proposed framework, we use non-
local operation to refine the input feature Rxi based on the the
relationship between input feature Rxi and reference feature
Ryj . When Rx is equal to Ry , it means that the non-local
operation is conducted in the spatial domain. We name it as
spatial non-local operation, which is the standard non-local
operation used in [26]. When Rx is not equal to Ry , e.g.,
Rx, Ry represent the feature from different time step, we name
it as the temporal non-local operation.

The architecture of the non-local network is shown in Fig.
3. Inspired by [51], we do not use the whole feature map in
Ry to calculate the similarity between Rxi and Ryj . In fact, we
only use the corresponding neighbouring feature map P in
Ry to obtain the similarity. In our implementation, we use
the embedded Gaussian function to measure the similarity
between Rxi and Ryj as follows,

w(Rxi , R
y
j ) = exp((WθR

x
i )

TWφR
y
j ), j ∈ P (7)

where Wθ and Wφ are the weight metrixs and implemented
by standard convolution operation. g(Ryj ) is the representation
of Ryj , which is also implemented by convolution as follows,

g(Ryj ) =WgR
y
j , j ∈ P (8)

where the Wg is the weight matrix. To facilitate the training
procedure, we use the residual connection in Figure 3. More
importantly, the residual connection also allows to insert the
non-local module into existing network. Then the output
feature at location i is computed by,
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Fig. 2. (a) Basic Kalman model. (b) Overview of the proposed deep Kalman filtering network for video artifact reduction. Xc
t is the decoded frame at time

t. X̂t−1 represents the restored frame from t − 1. The prediction network generates prior estimate X̂−
t for original frame based on Xc

t and X̂t−1. The
measurement network takes the input of the decoded frame Xc

t to obtain an initial measurement Zt. After that, we can build the posterior estimation X̂t by
fusing the prior estimate X̂−

t and the measurement Zt.

Rzi =Wzsoftmax(exp((WθR
x
i )

TWφR
y
j ))g(R

y
j ) + Rx

i (9)

where Wz is utilized to align the dimension.

D. Temporal Non-local Residual Network

1) Mathematical Formulation: In our proposed framework,
in order to obtain the prior estimation, we use a CNN model to
implement the non-linear function f(·) in the following way,

X̂−
t = F(X̂t−1, X

c
t ; θf ), (10)

where θf represent the trainable parameters. The prior estima-
tion of the current frame Xt depends on the estimated temporal
neighbouring frame X̂t−1 and its decoded frame Xc

t at the
current time step. The reasons are summarized in the following
way. First, considering the strong correlation characteristic in
temporal video sequences, it is natural to use the previous
X̂t−1 to predict the Xt and get the corresponding prior
estimation. Second, it is observed that the complex motion
scenarios with occlusion will make it difficult to predict Xt

by using X̂t−1 only. Therefore it is critical to employ the
decoded frame Xc

t for a robust estimation for Xt. Based on
these two assumptions, we model the transition function f(·)
in Eq. (4) by adding decoded frame Xc

t as the extra input.
2) Network Implementation: The temporal non-local resid-

ual network architecture is illustrated in Fig. 4(a). Specifically,
several residual blocks (pre-activation structure [56]) are used
to build the non-local residual network. The kernel size is set to
3×3 and the output channel number of convolution layer is set
as 64 except for the last layer, which is set to 1 for gray image.

We employ the non-local network in our implementation to
exploit the temporal non-local prior information. Specifically,
the feature from previous restored frame X̂t−1 will be utilized
to refine the feature extracted from current decoded frames. In
contrast to other video restoration approaches [22], [24], we do
not directly use the optical flow to warp the reference frame.
Instead, we rely on the temporal non-local module to obtain
the effective feature from reference frame, which is more
robust and lightweight. More training details are discussed in
Section III-H.

E. Linearization Network
In our proposed framework, we use the linearization net-

work to learn the corresponding transition matrix At in Eq. (5).
Traditional methods try to compute the Jacobian matrix of
transition function F(·) by using Taylor expansion, which
increases the computational complexity, especially for learning
based method. In our approach, the linearization network gen-
erate a liner matrix to approximate the non-linear procedure.
Specifically, based on the the prior estimation X̂−

t , previous
restored frame X̂t−1 and decoded frame Xc

t , we formulate the
problem in the following way,

X̂ l
t = ÃtX̂t−1 where Ãt = G(X̂t−1, X

c
t ; θm) (11)

where X̂ l
t represents the linearized prior estimation. In our

proposed framework, we optimize the network G(·) and expect
X̂ l
t to be close to prior estimation X̂−

t . The network archi-
tecture is provided in Fig. 4(b). In our implementation, we
use several convolution layers and residual blocks to build the
linearization network.
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Fig. 3. The architecture of generalized non-local network. For simplified illustration, we only provide the non-local operation for one specific location.
P represents the neighbouring features centered at location i in reference feature y. The blue lines represent the reshape operation.

⊗
denotes the matrix

multiplication.
⊕

denotes the element-wise sum. θ, φ and g represent the 1× 1 convolution. ‘c’ represents the channel number of feature.

(a) Temporal Non-lcoal Residual Network.

(b) Linearization Network.

(c) Measurement network.

Fig. 4. Network architecture of the proposed (a) Temporal Non-local
Residual Network (b) Linearization network. (c) Measurement Network. Here
‘Conv,3x3,64’ represents the convolution operation with the 3x3 kernel and
64 feature maps. ‘Reshape, m×n’ is the operation that reshapes one matrix to
m×n.

⊕
and

⊗
represent element-wise addition and matrix multiplication.

F. Measurement Network

In [27], the task-specific prior information (i.e., quantized
prediction error) is utilized to obtain robust measurement
estimation. However, it is not easy to utilize this information

in other video restoration task, such as video denoising. In this
paper, we utilized the spatial non-local information to compute
the measurement, which is more generalized. Specifically, the
measurement network is composed of several residual blocks
and a spatial non-local network. The architecture of measure-
ment network is illustrated in Fig. 4(c). The measurement is
obtained as follows,

Zt = Xc
t +M(Xc

t ; θz) (12)

where θz are the parameters for network M(·).
This formulation also means that the existing image restora-

tion methods could be seamless integrated into our framework
as the measurement network, which demonstrates the flexibil-
ity of the proposed framework.

G. Update Step

Based on the prior state estimation X̂−
t from the temporal

non-local mapping network (Section III-D), the transition ma-
trix Ãt obtained from the linearization network (Section III-E),
and the measurement Zt obtained from the measurement
network (Section III-F), we follows the Kalman update state
and compute the corresponding the posterior estimation in the
following way 1,

P−
t = ÃtPt−1Ã

T
t +Qt−1, (13)

Kt = P−
t H

T(HP−
t H

T + Ut)
−1, (14)

X̂t = X̂−
t +Kt(Zt −HX̂−

t ), (15)

Pt = (I −KtH)P−
t , (16)

Here, we introduce the denotations in above equations. First,
X̂t is the posterior estimation for the frame Xt, which is the
final restoration result at current time step. In addition, we
use P−

t and Pt to represent the estimated state covariance
matrixs for the prior estimation and the posterior estimation
respectively. The Kalman gain Kt is used to balance the trade-
off between prior estimation and measurement. H represents

1Eq. (13) corresponds to the covariance estimation and listed here for better
presentation.
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the measurement matrix that describes relationship between
measurement and original frame, and we use an identity matrix
in our implementation. Qt−1 and Ut represent the covariance
matrixs for process noise and the measurement noise, and
these two matrixs are assumed to be constant over time.

Discussion: In our approach, the Kalman gain updates at
each time step, which provides the potential to combine the
prior estimation and measurement in an adaptive way. In
case the restoration error of the previous frame is generated,
it means that the prior estimation is not reliable enough.
However, Zt can still provide effective information for the
restoration of current frame, which improves the robustness
of the proposed framework. Therefore, the error accumulation
problem can be alleviated in our deep Kalman model.

H. Training Strategy

In order to build this deep non-local Kalman model, we
optimize the proposed three networks in the following way.
First, for the temporal non-local residual network with train-
able parameters θf , the optimization procedure is formulated
as follows,

Lf (θf ) = ||Xt −F(X̂t−1, X
c
t ; θf )||22, (17)

It is notable that previous restored frame X̂t−1 is required
for obtaining the posterior estimation in the current time step.
In order to solve this chicken-and-egg problem, a straightfor-
ward approach is to train a video clip (5 frames or more)
in one iteration, then we can iteratively optimize the current
frame based on the previous restored frame. However, training
multiple video clips in one iteration is a huge challenge for
GPU memory size. In contrast, an on-line updating scheme
is proposed in our framework. First, a buffer is built to save
the restored image in each iteration. Then, in each iteration,
we use the restored previous frame in the buffer and decoded
frame at current time step to optimize our proposed temporal
non-local residual network. The restored frame of current time
will be saved into the buffer.

Then we fix the trainable parameters θf and optimize
the linearization network G(θm) based on the following loss
function,

Lm(θm) = ||X̂−
t − G(X̂t−1, X

c
t ; θm)X̂t−1||22, (18)

In our implementation, a small patch size (4 × 4) is used
to reduce the computational complexity when optimizing θm.

Then, the measurement net is optimized based on the
following loss function,

Lz(θz) = ||Xt −M(Xc
t ; θz)||22 (19)

where Xt represents the original frame, Xc
t is the compressed

frame.
Implementation Details. We adopt the Adam solver [57] with
the initial learning rate of 0.001, β1 = 0.9 and β2 = 0.999
to train our model. The learning rate is divided by 10 after
every 20 epochs. In order to stabilize the training procedure,
the gradient clip technique is employed with global norm

0.001. The batch size is set to 20. The trainable parameters
are initialized based on [58].

The training procedures are summarized as follows. First,
the prediction network is optimized based on the loss function
Lf in Eq. (17) for 40 epochs. Then we fix the parameters θf
and train the linearization network by using the loss Lm in Eq.
(18). Finally, the measurement network is optimized based on
the loss function Lz in Eq. (19) for another 40 epochs.

IV. EXPERIMENTS

In this section, we perform extensive experiments to demon-
strate the effectiveness of the proposed deep non-local Kalman
network. The experimental results are evaluated on the Vimeo-
90K [22], HEVC test sequences [59] and MPI Sintel dataset
[60]. The whole system is implemented based on the Tensor-
flow [61] platform. The training time on two Titan X GPUs
is about 26 hours.

A. Experimental Setup

Training Dataset. In our experiments, we use the Vimeo-90K
dataset [22] as the training dataset. Vimeo-90K dataset [22] is
widely used for low-level vision tasks, such as video super-
resolution (SR), video denoising and video artifact reduction.
There are 4,278 videos with 89,800 independent clips in
the dataset, the resolution of video clip is 448 × 256. We
follow [22] and use 64,612 clips for training and 7,824 clips
for performance evaluation. In this section, both PSNR and
SSIM [62] are utilized as the evaluation metrics for video
compression artifact reduction task.

In addition, to generate the compressed frames, we use
HEVC codec (x265 [63]) with quantization parameter qp = 32
and qp = 37 to generate the compressed frames. And the
video format is RGB 4:4:4. We disable the loop filters for
HEVC in Table II and Table III. We also follow the setting in
[22] and compress the video by JPEG2000 codec with quality
q = 20 and q = 40. The tile size of JPEG2000 is 256x256.
The PSNR/SSIM are evaluated on the RGB channels by using
function from MATLAB. In the following experiments, we
train different models for different codecs or quality levels.

In addition, in order to make a fair comparison with MFQE
[46], DS-CNN [21], we also train our model by using the
same codec setting and training dataset in [46]. Specifically,
we collect 70 uncompressed video sequences from Xiph
website [64] and JCT-VC [59]. 60 sequences are used for
training and 10 sequences are used for testing. The compressed
video sequences are generated by HM [59] with quantization
parameter qp = 37. The video format is YUV 4:2:0. We use
HM with low-delay P setting. The loop filters are used. The
PSNR is evaluated in Y channel.

B. Experimental Results

Comparison with the State-of-the-art Methods. To demon-
strate the effectiveness of our approach, we compare the non-
local Kalman model with several recent image and video
artifact reduction methods: ARCNN [18], DnCNN [17],V-
BM4D [66], Toflow [22], Li et al. [65], DS-CNN [21], MFQE
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Fig. 5. Quantitative (PSNR/SSIM) and visual comparison of different methods for HEVC artifact reduction on the Vimeo dataset at qp=37.
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Fig. 6. Quantitative (PSNR/SSIM) and visual comparison of JPEG2000 artifact reduction on the Vimeo dataset for q=20.

[46] and DKF [27]. In addition, modern video codecs already
have a default artifact reduction scheme. For example, HEVC
utilizes loop filter [1] (HEVC-LF) to reduce the blocking
artifacts. This technique is also included for comparison.

For ARCNN [18] and DnCNN [17] , we use the code
provided by the authors and train their models on the Vimeo-
90k dataset. For V-BM4D and Toflow, we directly cited their
results in [22]. The results of HEVC-LF are generated by
enabling loop filter and SAO [1] in HEVC codec (x265). For

the results of Li et al. [65], DS-CNN [21] and MFQE [46],
we directly cited their results in [46].

In order to evaluate the performance on the Vimeo dataset,
we follow [22] and only evaluate the 4th frame of each clip in
the Vimeo testing dataset. The quantitative results are reported
in Table II and Table III. As we can see, our proposed approach
outperforms the state-of-the-art methods in term of PSNR and
SSIM. For example, as shown in the first row in Table II,
our method has a 0.36dB improvement when compared with
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TABLE I
AVERAGE PSNR GAIN (DB) FOR THE TEST SEQUENCES IN [46]. 1:

PEOPLEONSTREET 2: TUNNELFLAG 3: KIMONO 4:BARSCENE 5: VIDYO1
6: VIDYO3 7: VIDYO4 8: BASKETBALLPASS 9: RACEHORSES 10:MAD).

Seq. ARCNN
[18]

DnCNN
[17]

Li et al.
[65]

DS-CNN
[21]

MFQE
[46] Ours

1 0.1287 0.1955 0.2523 0.4762 0.7716 0.8081
2 0.0718 0.1888 0.2857 0.4228 0.6042 0.8715
3 0.1095 0.1328 0.1872 0.2394 0.4715 0.3850
4 0.1304 0.2084 0.2170 0.3173 0.4381 0.4618
5 0.1900 0.2936 0.3645 0.3252 0.5496 0.7330
6 0.1522 0.1944 0.2630 0.3728 0.5980 0.6210
7 0.1455 0.2224 0.2570 0.2777 0.3898 0.4612
8 0.1305 0.2424 0.2939 0.2790 0.4838 0.5202
9 0.1573 0.2588 0.3034 0.2720 0.3935 0.4670

10 0.1490 0.2509 0.2926 0.2498 0.4019 0.4740
Avg. 0.1364 0.2188 0.2717 0.3232 0.5102 0.5802

the learning based image artifact reduction DnCNN [17]. In
addition, our method also outperforms the DKF method [27]
by 0.13dB, which demonstrates the effectiveness of non-local
prior information.

In Table I, we provide the evaluation results on the testing
dataset in [46]. It is observed that our DNKF model performs
better than approaches in MFQE [46] and DS-CNN [21].
And our approach only uses one previous reference frame
while MFQE [46] used two reference frames. Therefore, it
is possible to improve the performance further by employing
more reference frames.

Fig. 5 and Fig. 6 provides the qualitative comparisons
of ARCNN [18], Toflow [22], HEVC-LF [1] and ours. It
is obvious that compressed HEVC/JPEG2000 frames have
annoying artifact, such as blockness. Based on the proposed
Kalman model, our framework can remove these artifacts
while other methods may fail. For example, the railing (the
fourth row in Fig. 5) and the equipment (the fourth row in
Fig. 6) both have complex texture and structure, our method
can well restore these complex regions while other baseline
methods still have visible artifact.
Ablation Study of Measurement Network(MN). In this
subsection, we investigate the effectiveness of the proposed
measurement network. Our measurement network is composed
of several residual blocks and a spatial non-local network
module. Note that the output of our measurement network
itself can be readily used as the artifact reduction result.
So the results in this subsection are obtained without using
the prediction network. In order to validate that the non-
local module can serve as important prior information for
improving the performance, we train another model with
the same architecture but without spatial non-local network
(SNL) in the measurement network. Quantitative results on the
Vimeo-90k dataset are listed in Table IV. When compared with
our simplified model without spatial non-local network(see the
1st row), our model with spatial non-local network (MN+SNL,
see the 2nd row) can boost the performance by 0.1dB in term
of PSNR. It demonstrates that incorporating strong non-local
prior information can improve the restoration performance.
Ablation Study on the Prediction Network (PN). We further
evaluate the effectiveness of the temporal non-local residual
network. Note that the output of our prediction network itself

can be also readily used for the video artifact reduction. So
the results in this subsection are obtained without using the
measurement network.

First, in order to validate the effectiveness of the proposed
temporal non-local (TNL) module, we perform another ex-
periment by removing the TNL in prediction network (see
3rd row). It is observed that TNL module improves the
performance with 0.12dB from 35.60dB to 35.72dB.

In order to validate the effectiveness of the recursive
filtering, we train another model, which utilizes the same
network architecture as our prediction network but the input
are Xc

t and X̂t−1. Namely, it restores the current frame by
employing previous restored frames. The quantitative results
are reported in Table IV. When compared with our simplified
model without using recursive filtering (PN+TNL) (see the 4th

row), our model with recursive filtering (PN+TNL+RF, see
the 5th row) can significantly improve the quality of restored
frame by 0.15dB from 35.72dB to 35.87 dB in terms of PSNR.
It shows that our recursive filtering scheme can effectively
leverage information from previous restored frames, which
provides more accurate pixel information.

It is worth mentioning that the result in the last row of
Table IV is the best as we combine the outputs from both
the measurement network and the prediction network through
the Kalman update process. In addition, we also find that the
temporal information is crucial for the video restoration. For
example, the results from prediction network (PN+TNL+RF,
see the 5th row) is better the measurement network (MN+SNL,
see the 2nd row). The results of our previous DKN model
without prediction residual is provided in the 7th row. It
validates that our proposed spatial/temporal non-lcoal network
can improve the performance for the video restoration.
Flow based image warp. In order to exploit the temporal
information, existing video restoration approaches use the
optical flow to warp the reference frames [22], [24]. We also
compare our non-local operation with this traditional pipeline.
Specifically, we warp the reference frame X̂t−1 based on the
estimated flow from [67] and concatenate the warped image
and decoded frame Xc

t as the input for prediction network.
Our proposed temporal non-local residual network (see the
5th row) performs better than the flow based approaches
(PN+FLOW, see the 6th row). In addition, our method is
more lightweight. For example, the flow based approaches
need extra optical flow network and the parameters of Spynet
[67] are about 1.44M.
Cross dataset validation. To investigate the generalization
ability of our model, we also perform experiments by evalu-
ating our approach on other datasets. In this subsection, we
train our model on the Vimeo dataset and evaluate it on the
HEVC standard sequences [59] and MPI Sintel Flwo dataset
[60]. The experimental results provided in Table V and Table
VI show that our approach performs better than the state-of-
the-art methods.
Video denoising. Since our approach does not rely on task
specific prior, such as the prediction error in [27], our frame-
work can be easily extended to other video restoration tasks
(e.g., video denoising). We have conducted a new experiment
for video denoising by using the current approach. Specifically,
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TABLE II
AVERAGE PSNR/SSIM RESULTS ON THE VIMEO TEST SEQUENCES FOR HEVC ARTIFACT REDUCTION (QP=32,37).

Dataset Setting Compressed ARCNN [18] DnCNN [17] HEVC-LF [1] DKF [27] Ours

Vimeo qp=32 33.69/0.944 34.87/0.954 35.58/0.961 34.19/0.950 35.81/0.962 35.94/0.963
qp=37 31.79/0.920 32.54/0.930 33.01/0.936 31.98/0.923 33.23/0.939 33.41/0.940

TABLE III
AVERAGE PSNR/SSIM RESULTS ON THE VIMEO DATASET FOR JPEG2000 ARTIFACT REDUCTION (Q=20,40).

Dataset Setting Compressed ARCNN [18] DnCNN [17] V-BM4D [66] Toflow [22] DKF [27] Ours

Vimeo
q=20 35.61/0.956 36.11/0.960 37.26/0.967 35.75/0.959 36.92/0.966 37.93/0.971 38.14/0.971
q=40 33.51/0.936 34.21/0.944 35.22/0.953 33.99/0.940 34.97/0.953 35.88/0.958 36.02/0.959

TABLE IV
ABLATION STUDY OF THE PROPOSED DEEP NON-LOCAL KALMAN

FILTERING METHOD ON THE VIMEO-90K DATASET. THE PSNR OF THE
COMPRESSED VIDEO IS 33.69DB.

No. MN SNL PN TNL RF FLOW PSNR
1 X 35.47
2 X X 35.57
3 X 35.60
4 X X 35.72
5 X X X 35.87
6 X X 35.64
7 X X X 35.73
8 X X X X X 35.94
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Fig. 7. The architecture of RNN based approach for video restoration.
‘ConvGRU’ represents the convolutional GRU module [68].

the input Xc
t and X̂t−1 represent the noisy current frame and

restored previous frame. Experimental results in Table VII
demonstrate that our method can improve the performance
significantly. For example, compared with the learning based
image denoising method DnCNN [17], our approach has
1.29dB gain.
Comparison with the RNN based approach. The traditional
RNN architectures also try to utilize the information/feature
from previous time step in a recursive way. This characteristic
means that the RNN based approaches can also be utilized for
video restoration. In this subsection, we design a new recursive
approach for video restoration task based on convolutional
gated recurrent unit (convGRU) [68]. The detailed architecture

is shown in Fig. 7. We use the recurrent network to completely
replace the Kalman filter in Fig. 2. Specifically, the same
CNN architecture is used to extract the features from the
distorted frames at each time step and a convGRU module
is used to restore the original image based on these features.
The corresponding result in Fig. 7 is 35.22dB, while ours is
better (35.94dB). Our observation is that it is difficult to train
the recurrent network, especially for the low-level task. Our
pipeline makes it easier to learn the network by combining
both measurement and prior estimation and using the non-
local prior information.
Neighbouring size of non-lcoal network. We also investigate
the influence of neighbouring size of non-local network in
Table VIII. The proposed method achieves the best perfor-
mance when size is 10. A possible explanation is that when the
neighbouring size is larger, more irrelevant content is involved
to refine the feature, which may degrade the performance.
Fusion stage. For the temporal non-local residual network in
Fig. 4, we insert the non-local block after the third residual
block (Middle Fusion). In fact, we can also insert the non-local
block before the first residual block (Early Fusion) or after the
last residual block (Late Fusion). Experimental results show
that middle fusion (35.72dB) achieves better performance than
early fusion (35.61dB) or late fusion (35.65dB).
Flickering evaluation. Flickering artifact is one of the most
important factors for evaluating the quality of videos. In order
to measure the visual quality of the proposed method, we
employ the existing flicker metrics [69] and compare the video
quality from different restoration methods (see Table IX). The
smaller the score value, the smaller the flickering artifacts,
In Table IX, we provide the flickering score for the MPI
dataset. It validates that our method also has the advantage
of reducing the flicker artifact of the compressed video. For
example, the flickering score of compressed video is 0.9017,
while the restores video in our approach is 0.6838.
Computational complexity. We perform video restoration on
a sever with Titan X GPU. For the video frame with resolution
448x256, the inference time for TOFlow is 1.5s, while the
corresponding time for our non-local Kalman model is 0.18s.
The reason is that TOFlow used multiple reference frames and
had to calculate multiple optical flow fields, which increases
the computational complexity significantly. In addition, the
inference time for DnCNN and ARCNN are 0.077s and
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TABLE V
AVERAGE PSNR/SSIM RESULTS EVALUATED ON HEVC STANDARD TEST SEQUENCES (CLASS E) AND MPI SINTEL FLOW DATATSET FOR VIDEO

ARTIFACT REDUCTION (HEVC, QP=32) FOR CROSS DATASET VALIDATION.

Test Dataset Compressed HEVC-LF [1] DnCNN [17] DKF [27] Ours
HEVC Sequneces 35.62/0.974 36.13/0.975 36.60/0.970 36.72/0.973 36.99/0.977
MPI Sintel datast 32.87/0.944 33.30/0.951 34.20/0.959 34.21/0.960 34.36/0.960

TABLE VI
AVERAGE PSNR/SSIM RESULTS EVALUATED ON HEVC STANDARD TEST SEQUENCES (CLASS C) AND MPI SINTEL FLOW DATASET FOR VIDEO

ARTIFACT REDUCTION (JPEG2000, Q=20) FOR CROSS DATASET VALIDATION.

Test Dataset Compressed Toflow [22] DnCNN [17] DKF [27] Ours
HEVC Sequneces 32.17/0.948 32.37/0.948 33.19/0.953 33.83/0.958 33.96/0.959
MPI Sintel datast 34.91/0.959 34.78/0.959 36.40/0.969 37.01/0.973 37.12/0.974

TABLE VII
AVERAGE PSNR(DB) RESULTS FOR VIDEO DENOISING ON THE VIMEO

DATASET.

Sigma V-BM4D [66] DnCNN [17] Ours
15 35.80 37.15 38.44
20 34.39 34.95 36.00

TABLE VIII
AVERAGE PSNR(DB) RESULTS FOR NON-LOCAL NETWORK WITH

DIFFERENT SIZES.

Size 3 5 10 15
PSNR 36.61 35.68 35.72 35.71

0.011s, respectively. The parameters of our model is 1.2M.

V. CONCLUSIONS

In this paper, we have proposed a deep non-local Kalman
filtering network for video artifact reduction. The video com-
pression artifact reduction has been formulated as a Kalman
filtering procedure, where several deep neural networks are de-
signed to predict the states and estimations. Therefore, the re-
cursive nature of Kalman filtering and representation learning
ability of neural network are both exploited in our framework.
In addition, the non-local prior information is incorporated
to obtain high quality reconstruction. Our methodology has
been successfully extended to solve other low-level computer
vision tasks, such as denoising. Experimental results have
demonstrated the superiority of our deep Kalman filtering
network over the state-of-the-art methods.
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TABLE IX
FLICKERING SCORE ON THE MPI DATASET. THE SMALLER VALUE

REPRESENTS THE SMALLER FLICKER ARTIFACT.

Methods Flickering Score [69]
Compressed 0.9017

HEVC-LF [1] 0.8132
DnCNN [17] 0.6932

Ours 0.6838
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