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Abstract—In Internet applications, compressing the image
without perceptually distinguishable distortions and loading the
images without notable delays in the client end can significantly
improve the user experience. Compressing the image at high
bit rates can maintain the high quality of the decoded image
but in cost of long transmitting and decoding time, resulting in
bad user experience. The progressive coding scheme can resolve
the conflict between the high quality requirement and the large
loading delay. This paper proposes a novel efficient progressive
image coding framework based on deep convolutional neural
networks. The proposed framework is composed of a uniform
encoder network and two progressive decoder networks. The
encoder network decomposes the input image into two scales of
representations, that can be transmitted and reconstructed pro-
gressively into a basic quality preview image and a high-quality
image by two individual decoder networks respectively. All the
networks are jointly learned when achieving the rate distortion
optimization of both scales. Experiments results show that the
proposed method has much better coding performance than the
commercial codecs WebP and JPEG, which are commonly used in
Internet applications. Meanwhile, the proposed codec consumes
much less time to load the image compared with WebP.

Index Terms—High quality image compression, Progressive
image coding, Convolutional neural networks, Rate distortion
optimization

I. INTRODUCTION

To satisfy the requirements of Internet users for high quality,
the images are commonly coded at high bit rates, which out-
puts the compressed results without perceptually distortions.
However, as the bit-rate gets high, both of the transmission
time and the decoding complexity are also increased, resulting
in large loading delay and bad user experience. To resolve
the conflict between the high quality demands and the large
loading delay, the progressive coding scheme is proposed [/1]]
to code an image into several scales which can be transmitted
and decoded progressively.

WebP and JEPG are the most commonly used image codecs
in Internet applications for their high efficiency. But WebP
doesn’t support progressive coding, when the bit rate is set
high, it will introduce notable decoding delays. Meanwhile,
JPEG encodes and decodes images very fast and it supports
progressive coding, so it is still the first choice in many
applications, however its coding performance is much worse,
resulting in larger bandwidth and storage consumption.

In this paper, we explorers to develop a novel progressive
coding framework with both high coding performance and
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Fig. 1: Rate v.s user waiting time of different methods for high
quality image compression test on Kodak (quality threshold is 40 dB
PSNR).

low loading delays. The proposed framework is based on
deep learning based on convolutional neural network (CNN)
inspired by recent remarkable successes on image compression
[2]-[15]. Some CNN based image compression methods [6]
have shown better coding performance than most of the
traditional ones, including the best image codec BPG [16].
Moreover, CNNs can be performed highly parallel, which
is easily accelerated by multi-core devices, such as graphic
power unit (GPU). However, although deep learning based
compression methods have shown great potential, most of
them don’t support the progressive coding [2]], [4], [5], [12],
hindering their application in practice. In addition, Toderici’s
method [[11]] can be considered as a progressive codec, but
neither its performance nor its efficiency is far from satisfying.

In contrast, we proposed a novel method which has high
coding performance and supports the progressive coding with
high efficiency. The proposed progressive coding framework
consists of a uniform encoder network and two progressive
decoder networks. The encoder network decomposes the input
image to generate two scales of representations simultane-
ously. They can be progressively reconstructed by two decoder
networks into a preview image and a transparently compressed
image (which means the image is coded without perceptual
compression distortions) respectively. The first scale contains
a small number of representations, which are entropy coded
into a few bits and transmitted to the decoder end fast. The
preview image is quickly reconstructed by an efficient preview
decoder network within a small delay. Then the remaining
image representations, is transmitted and reconstructed by
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Fig. 2: The framework of the proposed progressive image codec. In
the encoder end, the input image is first decomposed into a basic and
an enhancement scales of representations through a unified encoder
CNN. Then they are separately entropy coded into a progressive bit-
stream. In the decoder ender, the bit-stream is sequentially entropy
decoded into representations and they are reconstructed into a preview
image and a full-quality image by two progressive decoder CNNs.

another full-quality decoder network to decode the full quality
image. The entropy coding is based on CNN based distribution
estimation inspired by Ballé [5]. All the networks are jointly
trained to achieve the minimized rate distortion losses of both
scales.

Comparative experiments on the high quality compression,
as shown in Fig. [T} have demonstrated the proposed method
has achieved outperforming coding performance, which is
significantly higher than either WebP or JPEG2000 and com-
petitive with BPG and state-of-the-art CNN based methods [J5]],
[11]. Moreover, the proposed method has negligible preview
image loading delays and consumes much less time on decod-
ing the full quality image compared with WebP or Ballé’s [5]
method. For example, the proposed method can saves 86.11%
and 62.19% time to load the preview and full-quality images
respectively when 40 dB PSNR quality threshold are achieved.

II. PROPOSED DEEP PROGRESSIVE IMAGE COMPRESSION
A. Overview of the Proposed Framework

The proposed CNN based progressive image compression
framework is shown as Fig. ] The encoder end contains a
unified image encoder network. It transforms the input image
into basic representations and enhancement representations
simultaneously. While in the decoder end, two progressive
decoder networks are included. The preview image decoder
network reconstructs the basic representations into a preview
image. The full-quality image decoder reconstructs the en-
hancement information from the enhancement representations
and then use the information to compensate the preview image
features into a full-quality image. Besides, two entropy codecs,
which entropy context models are also generated based on
deep learning, are used to code the basic and enhancement
representations into the progressive bit-stream.

B. Network Architectures

We present an implementation example of the proposed
progressive encoder and decoder networks, as shown in Fig. 3}

Note that we use the presented architectures as we are pursuing
a practical codec with real-time efficiency, however the internal
structure of the networks is fairly unrestricted, e.g., one could
exchange the space-to-depth (depth-to-space) layer for convo-
lution (deconvolution) or build larger networks for potential
higher coding performance without fundamentally changing
the model architecture.

In this paper, the input image is transformed into ba-
sic and enhancement representations simultaneously. This is
implemented by a unified encoder network inspired by the
work of Cai et al. [[7] in where a multi-scale decomposition
module is proposed to decompose image features into scalable
representations. However, in their method, all scales share the
same decoder network, which means the decoder process has
the constant complexity regardless the scales and thus the
progressive decoding is inefficient based on their method. Dif-
ferent from their method which puts the decomposition module
at the end of the encoder network, we decompose the image at
the front end of the network and then simultaneously transform
the decomposed image features into separable scalable image
representations, which can be individually and progressively
decoded with scaled complexity.

Specifically, the unified encoder network is mainly built by
stacks of linear operations followed by non-linear normaliza-
tion inspired by the method of Ballé et al. [5]. Different from
the network used in [5], in this paper, we place a space-to-
depth (S2D) layer followed by a convolution layer at the front
end of the network to improve the execution efficiency. S2D
rearranges the blocks of spatial image pixels into depth. It is
a lossless operation, which outputs a copy of the input image
where pixels from the height and width dimensions are moved
to the depth dimension. We use this operation to reduce the
spatial dimension of the input image, leading to almost halved
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Fig. 3: An implementation example of the proposed progressive
encoder/decoder networks. In the figures, the “S2D” block means
space-to-depth operation, followed by the block size (“K”) and the
down-sample scale factor and “D2S” is the depth-to-space operation.
The “Conv” blocks represent convolution layers, which kernel size
(“K”) and the stride size (“S”) are shown below, and “Deconv”
means deconvolution layer. “Sub” is element subtraction operation
and “Add” is element adding operation. “GDN” and “IGDN” are
generalized divisive normalization and its inverse operations [17].
“Shared” means the last two layers of the preview and the full-quality
decoder networks share the same parameters. Note that all the learned
operations are shown in green blocks and other fixed operations are
in yellow blocks.



computational complexity compared with the encoder network
proposed in [5].

The decoder end is fundamentally the counterpart of the
unified encoder network, but they are separated into two
progressive decoder networks. In detail, the quantized ba-
sic representations are first input into the preview decoder
network to reconstruct a basic quality image. The preview
decoder network is implemented as high efficient by using
much fewer filters within the inverse transformation. The full-
quality decoder network takes the similar architecture with
the preview decoder network but with more filters. To reduce
the computation redundancy, at the end of the network, the
full-quality image is integrated by the preview image features
and the enhancement features reconstructed from the quantized
enhancement representations. Note that the last deconvolution
layers of the preview decoder network and the full-quality
decoder network are shared, because it is a counterpart of the
first convolution layer in the unified encoder network.

C. Optimization of the Proposed Method

Once the implementation architectures of the proposed
framework has been proposed, the progressive codec is de-
termined by the network parameters, that includes the unified
encoder network (¢), the progressive decoder networks (0,
0c,1,) and the entropy codecs (wpre, Wenn). In this paper,
we optimize the proposed framework by minimizing the rate
distortion (RD) costs of the preview and the full-quality image
compression as defined as Eq.

X" = arg min {[Ru(X) + Apur D pur (X)) +
[RPTG (X) + )\pTerTe (X)]}

where X = {@,0prc, Ocnh, Wpre, Wenn} represent all the
parameters in the proposed framework and x* is the opti-
mized solution corresponds to the minimized loss. The total
loss function is a sum of the RD cost of the full-quality
compression and the preview compression. Specifically, Ry,
and Dy,; are the rate and the distortion of the the full-
quality compression result. R,.. and D,,. are the losses
for the preview one. Afy; and Ay are used to control the
balance between the rate and the distortion. For the preview
compression result, the rate is supposed to be low for fast
transmission, and for the full-quality compression, the quality
is the first prior, so A, is set very much lower relative to
A Ful-

1) Distortion Measurement: In order to compare with ex-
istent coding methods for high quality compression, which
are commonly optimized for mean square error (MSE), we
measure the distortions of the full quality based on MSE. It
is defined as Eq. 2]

6]

Dy = I = Iy )

where Iy, is the full-quality decoded image. But for the
preview image, which will seriously lose the information after
compression, minimizing the average image distortion based
on MSE will result in too smooth and blurry reconstructions

[3]. Besides, PSNR is not in line with the human vision
system especially at low rates. So we propose to use the
multiscale structural similarity index metric (MS-SSIM) [18]]
to measure the quality of the preview image to save more
structural information for better visual quality. The distortion
of the preview image is defined as Eq. [3]

Dpre =1~ MSSSIM(I, I,.) 3)

2) Rate Estimation: The entropy coding operations, such
arithmetic coding, are non-differential, so when the networks
are optimized by back propagation [[19], the rate term is usu-
ally estimated based on entropy. Many work has been proposed
on differential rate estimation for deep image compression [2],
[4], 15[, [12]. In this paper, we utilize the method proposed by
Ballé [5]. This distribution of the representations are estimated
as defined as Eq. [

pF(F) = N(070'2)
with o = gs(| Z;4s) and Z = g.(F;va)

The image representations F' are modeled as independent
individual distributed and following zero-centered Gaussian
distribution with variances o represented by the hyper prior
information. Z represents the hyper prior of the image, which
is analyzed by an analysis network g, at the encoder end
before the image representations F' are entropy coded. Then
the distribution of F' is estimated based on the variances o
reconstructed from quantized | Z] by a synthesis network. So
| Z] should also be transmitted to the decoder as the side
information. The distribution of Z is estimated differentially
by a linear spline function pz, which sample points are jointly
updated with other parameters.
The total rate is calculated as Eq. [3

R=Rrp+Rz=

H i W Z[*logzpF(F)] + [~logapz(2)]

In this paper, the rate includes two parts: the rate R, of
the basic representations for the preview image Fp,s and the
rate R, for the enhancement representations Fe,p. [Rpre
is calculated based on input F),.. using Eq. 4| and Eq. E],
and R, is calculated based on F,;. Finally, The total rate
Ry of the full-quality image is the sum of R, and Repp,.
Although We estimate 12, and R, using the same method,
the distribution model parameters for them are individual,
which means w,,. and w,y; contains their own hyper prior
analysis and synthesis network parameters and sample points
of the spline function.

(4)

&)

III. EXPERIMENTS
A. Implementation Details

During training, the hyper parameters Ap.. and Az, can
control the rate of the model. To generate models with
various rates, we train eight models with A;,, and \,.;
pairs are set as {Apre, Afu|Afur = 256X, = 32a, a =
{0.2,0.3,0.5,0.75,1.0,1.5,2.0,2.5}}. With the settings, the
qualities of the full-quality image of all the models are higher
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Fig. 4: Rate distortion curves of different methods averaged on Kodak. MS-SSIM is presented as —10log10(1 — msssim) dB as Toderici
et al. did in [9]]. Note that the highest PSNR of Toderici’s method is not larger than 35 dB, so we can’t see their RD curves in terms of

PSNR.

than 35 dB in terms of PSNR and the rates of the preview
image are lower than 0.6 bits per pixel (bpp).

We train the proposed networks for the loss function as Eq.
[ on a large-scale set formed by 20891 high-quality natural
images downloaded from [flickr.com. We uniformly use the
Adam optimization algorithm for training all models. To save
the time cost of the training process, we first train the model
with setting: A1 = 8192, A, = 32, and then fine-tune other
models from the pre-trained model as the scheme proposed by
Thesis et al [2].

B. Comparison with other Methods

We compare our method with 4 traditional codecs (BPG
[16]], WebP [20], JPEG2000 [21], JPEG [22]). and 3 CNN
based methods (Ballé’s [5]], Toderici’s [11]] and Theis’ [2]])
in terms of coding performance for high quality compression
and the executing time. Among the comparative methods,
Toderici’s [[11f], JPEG and JPEG2000 can work as progressive
codecs, so we also present the comparison results of their
preview images.

We first present the rate distortion curves averaged on Kodak
test image set [23]] in Fig. @] We set the quality threshold as
35 dB in terms of PSNR and compare the methods at the
quality higher than the threshold. As we can see, the coding
performance of the proposed method is significantly better
than either JPEG2000 or WebP, and competitive to the best
traditional codec (BPG) and the state-of-the-art CNN based
method (Ballé) in terms of PSNR. While measured by MS-
SSIM, the proposed method outperforms all the traditional
methods. Although the proposed method consumes 9.41%
higher rate in terms of BDBR [24] on PSNR compared with
Ballé’s, the proposed method can save substantial time to
encode or decode an image as shown in Table [I|

The executing time results of all the comparative methods
shown in Table [I| are tested on a computer with 8 logical
Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz and a GeForce
GTX 1080 Ti GPU. The quality target is set as 40dB in terms
of PSNR. To simulate the transmitting process in practical
Internet environment, the bandwidth is assumed as 10Mbps.
The results include the time of encoding, transmitting, decod-
ing the preview image (if the method supports the progressive
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Fig. 5: RD curves of the preview image. Note that, among these
methods, Webp, BPG, Theis’ [2] and Ballé’s [5] methods don’t
support progressive coding and they are tested using the normal
coding mode at low rates.

coding) and decoding the full-quality image. Here we define
the user waiting time as the time of loading the preview image
(for progressive coding) or the full-quality image (for non-
progressive coding).

As we can see, the methods doesn’t support progressive
coding can’t load the image until the full-size file (By,;) is
totally transmitted and the full-quality image I ful 1s decoded.
These methods have long user waiting time. In contrast, the
proposed method can quickly load the preview image fp,,e
from a part of the file By, with real-time efficiency, leading
to negligible user waiting time (only 33.0 ms). Moreover, even
if measured by the loading time of the full-quality image, the
proposed method outperforms all the comparative methods
except JPEG, which has much lower coding performance
than the proposed method. Compared with Ballé’s method,
the proposed method can save 40.46% or 30.60% to encode
or load an image (sum of transmitting and decoding time)
respectively with only 9.41% BDBR performance decline,
and the proposed method can decode a preview image with
only 25.50% time. As the relationship between the rate and
the user waiting time shown in Fig. [T} the proposed method
achieves a good balance between the coding performance and
the executing efficiency for practical application.

We show the quality of the preview image by RD curves
as shown in Fig. 5] The eight low-rate points of the preview
image compression are generates together with those eight
full-quality compression results shown in Fig. ] As we can
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Table I: Time testing averaged on Kodak in terms of encoding, transmitting and decoding time. We assume the bandwidth is 10Mbps and the
transparency quality threshold is 40 dB in terms of PSNR. Note that the executable program of Toderici’s method can’t generate full-quality

image with higher 40 dB PSNR.

Encoder end Decoder end (accumulated time is shown in the right column) User waiting

Methods Encode  File size | Receive Bpre Decode Ipre Receive By Decode Iy, time
JPEG 149.7Kb | 18.7 5.8 1169 1169 9.2

JPEG2000 57.0 119.0Kb | 18.8 18.7 57.9 76.6 92.9 92.9 586 1516 76.6

WebP 1193 104.1Kb - - - 81.3 81.3 156.2 2375 237.5

BPG 281.7 83.1Kb - - - 64.9 1459  210.9 210.9

Balle (5] 78.6 75.4Kb - - - - 58.9 70.5 129.4 129.4

Todrici [[11] 899.1 - 20.3 20.3 242.8  263.1 - - - - 263.1
Proposed 84.0Kb 18.8 14.2 65.6 65.6 242

see, the proposed method can compress the preview image
with high coding performance that is competitive to Ballé’s
method or BPG and even better than them at rates lower
0.35bpp. Note that neither Ballé’s method nor BPG supports
progressive coding and they are ran in the normal mode at low
rates but with full computational complexities.

IV. CONCLUSION

This paper proposes a novel CNN based progressive image
compression framework to solve the conflict between the high
quality requirements and the long loading delay with high
coding performance and executing efficiency. The proposed
framework is composed of a unified encoder network and
two progressive decoder networks, with which the image can
be coded into a preview image and a full-quality image. All
the networks are jointly optimized for the minimized rate
distortion losses of the preview and the full quality images.
Experiments results show the proposed method achieves state-
of-the-art coding performance at high rates, and the executing
efficiency is close to JPEG (but with significantly higher
coding performance) and better than all other comparative
methods.
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