
DVC: An End-to-end Deep Video Compression Framework

Guo Lu1, Wanli Ouyang2, Dong Xu3, Xiaoyun Zhang1, Chunlei Cai1, and Zhiyong Gao ∗1

1Shanghai Jiao Tong University, {luguo2014, xiaoyun.zhang, caichunlei, zhiyong.gao}@sjtu.edu.cn
2The University of Sydney, SenseTime Computer Vision Research Group, Australia

3The University of Sydney, {wanli.ouyang, dong.xu}@sydney.edu.au

Abstract

Conventional video compression approaches use the pre-

dictive coding architecture and encode the corresponding

motion information and residual information. In this paper,

taking advantage of both classical architecture in the con-

ventional video compression method and the powerful non-

linear representation ability of neural networks, we pro-

pose the first end-to-end video compression deep model that

jointly optimizes all the components for video compression.

Specifically, learning based optical flow estimation is uti-

lized to obtain the motion information and reconstruct the

current frames. Then we employ two auto-encoder style

neural networks to compress the corresponding motion and

residual information. All the modules are jointly learned

through a single loss function, in which they collaborate

with each other by considering the trade-off between reduc-

ing the number of compression bits and improving quality

of the decoded video. Experimental results show that the

proposed approach can outperform the widely used video

coding standard H.264 in terms of PSNR and be even on

par with the latest standard H.265 in terms of MS-SSIM.

Code is released at https://github.com/GuoLusjtu/DVC.

1. Introduction

Nowadays, video content contributes to more than 80%

internet traffic [26], and the percentage is expected to in-

crease even further. Therefore, it is critical to build an effi-

cient video compression system and generate higher quality

frames at given bandwidth budget. In addition, most video

related computer vision tasks such as video object detection

or video object tracking are sensitive to the quality of com-

pressed videos, and efficient video compression may bring

benefits for other computer vision tasks. Meanwhile, the

techniques in video compression are also helpful for action

recognition [41] and model compression [16].

However, in the past decades, video compression algo-

rithms [39, 31] rely on hand-crafted modules, e.g., block

based motion estimation and Discrete Cosine Transform

(DCT), to reduce the redundancies in the video sequences.

∗Corresponding author

(a) Original frame (Bpp/MS-SSIM) (b) H.264 (0.0540Bpp/0.945)

(c) H.265 (0.082Bpp/0.960) (d) Ours (0.0529Bpp/ 0.961)

Figure 1: Visual quality of the reconstructed frames from

different video compression systems. (a) is the original

frame. (b)-(d) are the reconstructed frames from H.264,

H.265 and our method. Our proposed method only con-

sumes 0.0529pp while achieving the best perceptual qual-

ity (0.961) when measured by MS-SSIM. (Best viewed in

color.)

Although each module is well designed, the whole com-

pression system is not end-to-end optimized. It is desir-

able to further improve video compression performance by

jointly optimizing the whole compression system.

Recently, deep neural network (DNN) based auto-

encoder for image compression [34, 11, 35, 8, 12, 19, 33,

21, 28, 9] has achieved comparable or even better perfor-

mance than the traditional image codecs like JPEG [37],

JPEG2000 [29] or BPG [1]. One possible explanation is

that the DNN based image compression methods can ex-

ploit large scale end-to-end training and highly non-linear

transform, which are not used in the traditional approaches.

However, it is non-trivial to directly apply these tech-

niques to build an end-to-end learning system for video

compression. First, it remains an open problem to learn

how to generate and compress the motion information tai-

lored for video compression. Video compression methods

heavily rely on motion information to reduce temporal re-

dundancy in video sequences. A straightforward solution

is to use the learning based optical flow to represent mo-

tion information. However, current learning based optical

flow approaches aim at generating flow fields as accurate

as possible. But, the precise optical flow is often not opti-

11006

mal for a particular video task [42]. In addition, the data

volume of optical flow increases significantly when com-

pared with motion information in the traditional compres-

sion systems and directly applying the existing compression

approaches in [39, 31] to compress optical flow values will

significantly increase the number of bits required for stor-

ing motion information. Second, it is unclear how to build

a DNN based video compression system by minimizing the

rate-distortion based objective for both residual and motion

information. Rate-distortion optimization (RDO) aims at

achieving higher quality of reconstructed frame (i.e., less

distortion) when the number of bits (or bit rate) for com-

pression is given. RDO is important for video compression

performance. In order to exploit the power of end-to-end

training for learning based compression system, the RDO

strategy is required to optimize the whole system.

In this paper, we propose the first end-to-end deep video

compression (DVC) model that jointly learns motion es-

timation, motion compression, and residual compression.

The advantages of the this network can be summarized as

follows:

• All key components in video compression, i.e., motion

estimation, motion compensation, residual compres-

sion, motion compression, quantization, and bit rate

estimation, are implemented with an end-to-end neu-

ral networks.

• The key components in video compression are jointly

optimized based on rate-distortion trade-off through a

single loss function, which leads to higher compres-

sion efficiency.

• There is one-to-one mapping between the components

of conventional video compression approaches and our

proposed DVC model. This work serves as the bridge

for researchers working on video compression, com-

puter vision, and deep model design. For example, bet-

ter model for optical flow estimation and image com-

pression can be easily plugged into our framework.

Researchers working on these fields can use our DVC

model as a starting point for their future research.

Experimental results show that estimating and compress-

ing motion information by using our neural network based

approach can significantly improve the compression perfor-

mance. Our framework outperforms the widely used video

codec H.264 when measured by PSNR and be on par with

the latest video codec H.265 when measured by the multi-

scale structural similarity index (MS-SSIM) [38].

2. Related Work

2.1. Image Compression

A lot of image compression algorithms have been pro-

posed in the past decades [37, 29, 1]. These methods heav-

ily rely on handcrafted techniques. For example, the JPEG

standard linearly maps the pixels to another representation

by using DCT, and quantizes the corresponding coefficients

before entropy coding[37]. One disadvantage is that these

modules are separately optimized and may not achieve op-

timal compression performance.

Recently, DNN based image compression methods have

attracted more and more attention [34, 35, 11, 12, 33, 8,

21, 28, 24, 9]. In [34, 35, 19], recurrent neural networks

(RNNs) are utilized to build a progressive image compres-

sion scheme. Other methods employed the CNNs to de-

sign an auto-encoder style network for image compres-

sion [11, 12, 33]. To optimize the neural network, the

work in [34, 35, 19] only tried to minimize the distortion

(e.g., mean square error) between original frames and re-

constructed frames without considering the number of bits

used for compression. Rate-distortion optimization tech-

nique was adopted in [11, 12, 33, 21] for higher compres-

sion efficiency by introducing the number of bits in the opti-

mization procedure. To estimate the bit rates, context mod-

els are learned for the adaptive arithmetic coding method in

[28, 21, 24], while non-adaptive arithmetic coding is used

in [11, 33]. In addition, other techniques such as general-

ized divisive normalization (GDN) [11], multi-scale image

decomposition [28], adversarial training [28], importance

map [21, 24] and intra prediction [25, 10] are proposed to

improve the image compression performance. These exist-

ing works are important building blocks for our video com-

pression network.

2.2. Video Compression

In the past decades, several traditional video compres-

sion algorithms have been proposed, such as H.264 [39] and

H.265 [31]. Most of these algorithms follow the predictive

coding architecture. Although they provide highly efficient

compression performance, they are manually designed and

cannot be jointly optimized in an end-to-end way.

For the video compression task, a lot of DNN based

methods have been proposed for intra prediction and resid-

ual coding[13], mode decision [22], entropy coding [30],

post-processing [23]. These methods are used to improve

the performance of one particular module of the traditional

video compression algorithms instead of building an end-

to-end compression scheme. In [14], Chen et al. pro-

posed a block based learning approach for video compres-

sion. However, it will inevitably generate blockness artifact

in the boundary between blocks. In addition, they used the

motion information propagated from previous reconstructed

frames through traditional block based motion estimation,

which will degrade compression performance. Tsai et al.

proposed an auto-encoder network to compress the residual

from the H.264 encoder for specific domain videos [36].

This work does not use deep model for motion estimation,

11007

motion compensation or motion compression.

The most related work is the RNN based approach in

[40], where video compression is formulated as frame in-

terpolation. However, the motion information in their ap-

proach is also generated by traditional block based mo-

tion estimation, which is encoded by the existing non-deep

learning based image compression method [5]. In other

words, estimation and compression of motion are not ac-

complished by deep model and jointly optimized with other

components. In addition, the video codec in [40] only aims

at minimizing the distortion (i.e., mean square error) be-

tween the original frame and reconstructed frame without

considering rate-distortion trade-off in the training proce-

dure. In comparison, in our network, motion estimation

and compression are achieved by DNN, which is jointly

optimized with other components by considering the rate-

distortion trade-off of the whole compression system.

2.3. Motion Estimation

Motion estimation is a key component in the video com-

pression system. Traditional video codecs use the block

based motion estimation algorithm [39], which well sup-

ports hardware implementation.

In the computer vision tasks, optical flow is widely used

to exploit temporal relationship. Recently, a lot of learning

based optical flow estimation methods [15, 27, 32, 17, 18]

have been proposed. These approaches motivate us to inte-

grate optical flow estimation into our end-to-end learning

framework. Compared with block based motion estima-

tion method in the existing video compression approaches,

learning based optical flow methods can provide accurate

motion information at pixel-level, which can be also op-

timized in an end-to-end manner. However, much more

bits are required to compress motion information if optical

flow values are encoded by traditional video compression

approaches.

3. Proposed Method

Introduction of Notations. Let V =
{x1, x2, ..., xt−1, xt, ...} denote the current video se-

quences, where xt is the frame at time step t. The predicted

frame is denoted as x̄t and the reconstructed/decoded

frame is denoted as x̂t. rt represents the residual (error)

between the original frame xt and the predicted frame

x̄t. r̂t represents the reconstructed/decoded residual. In

order to reduce temporal redundancy, motion information

is required. Among them, vt represents the motion vector

or optical flow value. And v̂t is its corresponding recon-

structed version. Linear or nonlinear transform can be

used to improve the compression efficiency. Therefore,

residual information rt is transformed to yt, and motion

information vt can be transformed to mt, r̂t and m̂t are the

corresponding quantized versions, respectively.

3.1. Brief Introduction of Video Compression

In this section, we give a brief introduction of video com-

pression. More details are provided in [39, 31]. Gener-

ally, the video compression encoder generates the bitstream

based on the input current frames. And the decoder recon-

structs the video frames based on the received bitstreams.

In Fig. 2, all the modules are included in the encoder side

while blue color modules are not included in the decoder

side.

The classic framework of video compression in Fig. 2(a)

follows the predict-transform architecture. Specifically, the

input frame xt is split into a set of blocks, i.e., square re-

gions, of the same size (e.g., 8 × 8). The encoding proce-

dure of the traditional video compression algorithm in the

encoder side is shown as follows,

Step 1. Motion estimation. Estimate the motion be-

tween the current frame xt and the previous reconstructed

frame x̂t−1. The corresponding motion vector vt for each

block is obtained.

Step 2. Motion compensation. The predicted frame x̄t

is obtained by copying the corresponding pixels in the pre-

vious reconstructed frame to the current frame based on the

motion vector vt defined in Step 1. The residual rt between

the original frame xt and the predicted frame x̄t is obtained

as rt = xt − x̄t.

Step 3. Transform and quantization. The residual rt
from Step 2 is quantized to ŷt. A linear transform (e.g.,

DCT) is used before quantization for better compression

performance.

Step 4. Inverse transform. The quantized result ŷt in

Step 3 is used by inverse transform for obtaining the recon-

structed residual r̂t.
Step 5. Entropy coding. Both the motion vector vt in

Step 1 and the quantized result ŷt in Step 3 are encoded into

bits by the entropy coding method and sent to the decoder.

Step 6. Frame reconstruction. The reconstructed

frame x̂t is obtained by adding x̄t in Step 2 and r̂t in Step

4, i.e. x̂t = r̂t + x̄t. The reconstructed frame will be used

by the (t+ 1)th frame at Step 1 for motion estimation.

For the decoder, based on the bits provided by the en-

coder at Step 5, motion compensation at Step 2, inverse

quantization at Step 4, and then frame reconstruction at Step

6 are performed to obtain the reconstructed frame x̂t.

3.2. Overview of the Proposed Method

Fig. 2 (b) provides a high-level overview of our end-

to-end video compression framework. There is one-to-one

correspondence between the traditional video compression

framework and our proposed deep learning based frame-

work. The relationship and brief summarization on the dif-

ferences are introduced as follows:

Step N1. Motion estimation and compression. We use

a CNN model to estimate the optical flow [27], which is

11008

!"##$%&

'#()$

!"##$%&

'#()$

*#(%+,-#)

./-0123(+$4

5-&6-%27+&6)(&6-%

5-&6-%2

!-)8$%+(&6-%

!
9%:$#+$

*#(%+,-#)

7%&#-8;2

!-46%<

=$0-4$42'#()$+ .",,$#

>
?$+64"(/

7%0-4$# @$&

A8&60(/ '/-B @$&

5-&6-%

!-)8$%+(&6-% @$&

!
?$+64"(/

=$0-4$# @$&

.6& ?(&$

7+&6)(&6-% @$&

>

5C 7%0-4$# @$&

>

5C =$0-4$# @$&

*#(46&6-%(/ C64$- !-)8#$++6-% '#()$B-#1 7%4D&-D$%4 C64$- !-)8#$++6-% '#()$B-#1

!"

#!"

$" %$"&"

'&"

%!"

%!"()*"

%*"

+,"

,"

!"

#!"

&"

'&"

%!"

%!"()

*"

+,"

%$"%$"

*"

E(F E3F

=$0-4$42'#()$+ .",,$#

G-++

Figure 2: (a): The predictive coding architecture used by the traditional video codec H.264 [39] or H.265 [31]. (b): The

proposed end-to-end video compression network. The modules with blue color are not included in the decoder side.

considered as motion information vt. Instead of directly en-

coding the raw optical flow values, an MV encoder-decoder

network is proposed in Fig. 2 to compress and decode the

optical flow values, in which the quantized motion repre-

sentation is denoted as m̂t. Then the corresponding recon-

structed motion information v̂t can be decoded by using the

MV decoder net. Details are given in Section 3.3.

Step N2. Motion compensation. A motion compensa-

tion network is designed to obtain the predicted frame x̄t

based on the optical flow obtained in Step N1. More infor-

mation is provided in Section 3.4.

Step N3-N4. Transform, quantization and inverse

transform. We replace the linear transform in Step 3 by us-

ing a highly non-linear residual encoder-decoder network,

and the residual rt is non-linearly maped to the representa-

tion yt. Then yt is quantized to ŷt. In order to build an end-

to-end training scheme, we use the quantization method in

[11]. The quantized representation ŷt is fed into the resid-

ual decoder network to obtain the reconstructed residual r̂t.
Details are presented in Section 3.5 and 3.6.

Step N5. Entropy coding. At the testing stage, the

quantized motion representation m̂t from Step N1 and the

residual representation ŷt from Step N3 are coded into bits

and sent to the decoder. At the training stage, to estimate

the number of bits cost in our proposed approach, we use

the CNNs (Bit rate estimation net in Fig. 2) to obtain the

probability distribution of each symbol in m̂t and ŷt. More

information is provided in Section 3.6.

Step N6. Frame reconstruction. It is the same as Step

6 in Section 3.1.

3.3. MV Encoder and Decoder Network

In order to compress motion information at Step N1, we

design a CNN to transform the optical flow to the corre-

!

!"

#!"

"
#
$
%
&'
()
*
+
(*
,

-
.
/

"
#
$
%
&'
()
*
+
(*
,

-
.
/

"
#
$
%
&'
()
*
+
(*
,

-
.
/

"
#
$
%
&'
()
*
+
(*
,

.
0
1#
$
%
&'
(*
(*
,

2-
.
/

.
0
1#
$
%
&'
()
*
+
(*
,

2-
.
/

.
0
1#
$
%
&'
()
*
+
(*
,

2-
.
/

.
0
1#
$
%
&'
()
*
+
(*
,

$"

%$"

!"#$%&'()*

!"#+)&'()*

Figure 3: Our MV Encoder-decoder network.

Conv(3,128,2) represents the convoluation operation

with the kernel size of 3x3, the output channel of 128

and the stride of 2. GDN/IGDN [11] is the nonlinear

transform function. The binary feature map is only used for

illustration.

sponding representations for better encoding. Specifically,

we utilize an auto-encoder style network to compress the

optical flow, which is first proposed by [11] for the image

compression task. The whole MV compression network is

shown in Fig. 3. The optical flow vt is fed into a series of

convolution operation and nonlinear transform. The num-

ber of output channels for convolution (deconvolution) is

128 except for the last deconvolution layer, which is equal

to 2. Given optical flow vt with the size of M × N × 2,

the MV encoder will generate the motion representation mt

with the size of M/16×N/16×128. Then mt is quantized

to m̂t. The MV decoder receives the quantized representa-

tion and reconstruct motion information v̂t. In addition, the

quantized representation m̂t will be used for entropy cod-

ing.

11009

3.4. Motion Compensation Network

Given the previous reconstructed frame x̂t−1 and the mo-

tion vector v̂t, the motion compensation network obtains the

predicted frame x̄t, which is expected to as close to the cur-

rent frame xt as possible. First, the previous frame x̂t−1

is warped to the current frame based on the motion infor-

mation v̂t. The warped frame still has artifacts. To remove

the artifacts, we concatenate the warped frame w(x̂t−1, v̂t),
the reference frame x̂t−1, and the motion vector v̂t as the

input, then feed them into another CNN to obtain the re-

fined predicted frame x̄t. The overall architecture of the

proposed network is shown in Fig. 4. The detail of the

CNN in Fig. 4 is provided in supplementary material. Our

proposed method is a pixel-wise motion compensation ap-

proach, which can provide more accurate temporal informa-

tion and avoid the blockness artifact in the traditional block

based motion compensation method. It means that we do

not need the hand-crafted loop filter or the sample adaptive

offset technique [39, 31] for post processing.

3.5. Residual Encoder and Decoder Network

The residual information rt between the original frame

xt and the predicted frame x̄t is encoded by the residual en-

coder network as shown in Fig. 2. In this paper, we rely

on the highly non-linear neural network in [12] to trans-

form the residuals to the corresponding latent representa-

tion. Compared with discrete cosine transform in the tra-

ditional video compression system, our approach can bet-

ter exploit the power of non-linear transform and achieve

higher compression efficiency.

3.6. Training Strategy

Loss Function. The goal of our video compression

framework is to minimize the number of bits used for en-

coding the video, while at the same time reduce the dis-

tortion between the original input frame xt and the recon-

structed frame x̂t. Therefore, we propose the following

rate-distortion optimization problem,

λD +R = λd(xt, x̂t) + (H(m̂t) +H(ŷt)), (1)

where d(xt, x̂t) denotes the distortion between xt and x̂t,

and we use mean square error (MSE) in our implementa-

tion. H(·) represents the number of bits used for encoding

the representations. In our approach, both residual represen-

tation ŷt and motion representation m̂t should be encoded

into the bitstreams. λ is the Lagrange multiplier that deter-

mines the trade-off between the number of bits and distor-

tion. As shown in Fig. 2(b), the reconstructed frame x̂t, the

original frame xt and the estimated bits are input to the loss

function.

Quantization. Latent representations such as residual

representation yt and motion representation mt are required

!"#$%&'

!"#

!$#%&
'$#

())

!"#$*+ ,#"-*

Figure 4: Our Motion Compensation Network.

to be quantized before entropy coding. However, quantiza-

tion operation is not differential, which makes end-to-end

training impossible. To address this problem, a lot of meth-

ods have been proposed [34, 8, 11]. In this paper, we use

the method in [11] and replace the quantization operation

by adding uniform noise in the training stage. Take yt as

an example, the quantized representation ŷt in the train-

ing stage is approximated by adding uniform noise to yt,
i.e., ŷt = yt + η, where η is uniform noise. In the in-

ference stage, we use the rounding operation directly, i.e.,

ŷt = round(yt).

Bit Rate Estimation. In order to optimize the whole

network for both number of bits and distortion, we need to

obtain the bit rate (H(ŷt) and H(m̂t)) of the generated la-

tent representations (ŷt and m̂t). The correct measure for

bitrate is the entropy of the corresponding latent represen-

tation symbols. Therefore, we can estimate the probability

distributions of ŷt and m̂t, and then obtain the correspond-

ing entropy. In this paper, we use the CNNs in [12] to esti-

mate the distributions.

Buffering Previous Frames. As shown in Fig. 2, the

previous reconstructed frame x̂t−1 is required in the motion

estimation and motion compensation network when com-

pressing the current frame. However, the previous recon-

structed frame x̂t−1 is the output of our network for the

previous frame, which is based on the reconstructed frame

x̂t−2, and so on. Therefore, the frames x1, . . . , xt−1 might

be required during the training procedure for the frame xt,

which reduces the variation of training samples in a mini-

batch and could be impossible to be stored in a GPU when t
is large. To solve this problem, we adopt an on line updating

strategy. Specifically, the reconstructed frame x̂t in each it-

eration will be saved in a buffer. In the following iterations,

x̂t in the buffer will be used for motion estimation and mo-

tion compensation when encoding xt+1. Therefore, each

training sample in the buffer will be updated in an epoch. In

this way, we can optimize and store one frame for a video

clip in each iteration, which is more efficient.

4. Experiments

4.1. Experimental Setup

Datasets. We train the proposed video compression

framework using the Vimeo-90k dataset [42], which is re-

cently built for evaluating different video processing tasks,

11010

0.0 0.1 0.2 0.3 0.4
Bpp

34

35

36

37

38

39
P

S
N

R
(d

B
)

UVG dataset

Wu_ECCV2018
H.264
H.265
Proposed

0.1 0.2 0.3 0.4 0.5 0.6
Bpp

31

32

33

34

35

36

P
S

N
R

(d
B

)

HEVC Class B dataset

H.264
H.265
Proposed

0.05 0.10 0.15 0.20 0.25 0.30
Bpp

35

36

37

38

39

40

41

P
S

N
R

(d
B

)

HEVC Class E dataset

H.264
H.265
Proposed

0.0 0.1 0.2 0.3 0.4
Bpp

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

M
S
-S
S
IM

UVG dataset

Wu_ECCV2018
H.264
H.265
Proposed

0.1 0.2 0.3 0.4 0.5 0.6
Bpp

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

M
S

-S
S

IM

HEVC Class B dataset

H.264
H.265
Proposed

0.05 0.10 0.15 0.20 0.25 0.30
Bpp

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

M
S

-S
S

IM

HEVC Class E dataset

H.264
H.265
Proposed

Figure 5: Comparsion between our proposed method with the learning based video codec in [40], H.264 [39] and H.265 [31].

Our method outperforms H.264 when measured by both PSNR ans MS-SSIM. Meanwhile, our method achieves similar or

better compression performance when compared with H.265 in terms of MS-SSIM.

such as video denoising and video super-resolution. It con-

sists of 89,800 independent clips that are different from each

other in content.

To report the performance of our proposed method, we

evaluate our proposed algorithm on the UVG dataset [4],

and the HEVC Standard Test Sequences (Class B, Class C,

Class D and Class E) [31]. The content and resolution of

these datasets are diversified and they are widely used to

measure the performance of video compression algorithms.

Evaluation Method To measure the distortion of the re-

constructed frames, we use two evaluation metrics: PSNR

and MS-SSIM [38]. MS-SSIM correlates better with hu-

man perception of distortion than PSNR. To measure the

number of bits for encoding the representations, we use bits

per pixel(Bpp) to represent the required bits for each pixel

in the current frame.

Implementation Details We train four models with dif-

ferent λ (λ = 256, 512, 1024, 2048). For each model, we

use the Adam optimizer [20] by setting the initial learning

rate as 0.0001, β1 as 0.9 and β2 as 0.999, respectively. The

learning rate is divided by 10 when the loss becomes stable.

The mini-batch size is set as 4. The resolution of training

images is 256× 256. The motion estimation module is ini-

tialized with the pretrained weights in [27]. The whole sys-

tem is implemented based on Tensorflow and it takes about

7 days to train the whole network using two Titan X GPUs.

4.2. Experimental Results

In this section, both H.264 [39] and H.265 [31] are in-

cluded for comparison. In addition, a learning based video

compression system in [40], denoted by Wu ECCV2018, is

also included for comparison. To generate the compressed

frames by the H.264 and H.265, we follow the setting in

[40] and use the FFmpeg with very fast mode. The GOP

sizes for the UVG dataset and HEVC dataset are 12 and

10, respectively. Please refer to supplementary material for

more details about the H.264/H.265 settings.

Fig. 5 shows the experimental results on the UVG

dataset, the HEVC Class B and Class E datasets. The re-

sults for HEVC Class C and Class D are provided in sup-

plementary material. It is obvious that our method out-

performs the recent work on video compression [40] by a

large margin. On the UVG dataset, the proposed method

achieved about 0.6dB gain at the same Bpp level. It should

be mentioned that our method only uses one previous ref-

erence frame while the work by Wu et al. [40] utilizes

bidirectional frame prediction and requires two neighbour-

ing frames. Therefore, it is possible to further improve the

compression performance of our framework by exploiting

temporal information from multiple reference frames.

On most of the datasets, our proposed framework out-

performs the H.264 standard when measured by PSNR and

MS-SSIM. In addition, our method achieves similar or bet-

ter compression performance when compared with H.265

in terms of MS-SSIM. As mentioned before, the distortion

term in our loss function is measured by MSE. Neverthe-

less, our method can still provide reasonable visual quality

in terms of MS-SSIM.

4.3. Ablation Study and Model Analysis

Motion Estimation. In our proposed method, we exploit

the advantage of the end-to-end training strategy and opti-

11011

0.10 0.15 0.20 0.25 0.30 0.35
Bpp

30

31

32

33

34

35

P
S

N
R

(d
B

)

HEVC Class B dataset

Proposed
W/O update
W/O MC
W/O Joint Traning
W/O MVC
W/O Motion Information

Figure 6: Ablation study. We report the compression per-

formance in the following settings. 1. The strategy of

buffering previous frame is not adopted(W/O update). 2.

Motion compensation network is removed (W/O MC). 3.

Motion estimation module is not jointly optimized (W/O

Joint Training). 4. Motion compression network is removed

(W/O MVC). 5. Without relying on motion information

(W/O Motion Information).

mize the motion estimation module within the whole net-

work. Therefore, based on rate-distortion optimization, the

optical flow in our system is expected to be more compress-

ible, leading to more accurate warped frames. To demon-

strate the effectiveness, we perform a experiment by fixing

the parameters of the initialized motion estimation module

in the whole training stage. In this case, the motion estima-

tion module is pretrained only for estimating optical flow

more accurately, but not for optimal rate-distortion. Ex-

perimental result in Fig. 6 shows that our approach with

joint training for motion estimation can improve the per-

formance significantly when compared with the approach

by fixing motion estimation, which is the denoted by W/O

Joint Training in Fig. 6 (see the blue curve).

We report the average bits costs for encoding the optical

flow and the corresponding PSNR of the warped frame in

Table 1. Specifically, when the motion estimation module is

fixed during the training stage, it needs 0.044bpp to encode

the generated optical flow and the corresponding PSNR of

the warped frame is 27.33db. In contrast, we need 0.029bpp

to encode the optical flow in our proposed method, and the

PSNR of warped frame is higher (28.17dB). Therefore, the

joint learning strategy not only saves the number of bits re-

quired for encoding the motion, but also has better warped

image quality. These experimental results clearly show that

putting motion estimation into the rate-distortion optimiza-

tion improves compression performance.

In Fig. 7, we provide further visual comparisons. Fig. 7

(a) and (b) represent the frame 5 and frame 6 from the Ki-

Fix ME W/O MVC Ours

Bpp PSNR Bpp PSNR Bpp PSNR

0.044 27.33 0.20 24.32 0.029 28.17

Table 1: The bit cost for encoding optical flow and the cor-

responding PSNR of warped frame from optical flow for

different setting are provided.

(a) Frame No.5 (b) Frame No.6

(c) Reconstructed optical flow when

fixing ME Net.

(d) Reconstructed optical flow with

the joint training strategy.

0 5 10 15
Flow Magnitude

0.00

0.05

0.10

0.15

P
ro

ba
bi

lit
y

Flow Magnitude Distribution

(e) Magnitude distribution of the op-

tical flow map (c).

0 5 10 15
Flow Magnitude

0.0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

Flow Magnitude Distribution

(f) Magnitude distribution of the op-

tical flow map (d).

Figure 7: Flow visualize and statistic analysis.

mono sequence. Fig. 7 (c) denotes the reconstructed optical

flow map when the optical flow network is fixed during the

training procedure. Fig. 7 (d) represents the reconstructed

optical flow map after using the joint training strategy. Fig.

7 (e) and (f) are the corresponding probability distributions

of optical flow magnitudes. It can be observed that the re-

constructed optical flow by using our method contains more

pixels with zero flow magnitude (e.g., in the area of human

body). Although zero value is not the true optical flow value

in these areas, our method can still generate accurate motion

compensated results in the homogeneous region. More im-

portantly, the optical flow map with more zero magnitudes

requires much less bits for encoding. For example, it needs

0.045bpp for encoding the optical flow map in Fig. 7 (c)

while it only needs 0.038bpp for encoding optical flow map

in Fig. 7 (d).

It should be mentioned that in the H.264 [39] or H.265

[31], a lot of motion vectors are assigned to zero for achiev-

ing better compression performance. Surprisingly, our pro-

posed framework can learn a similar motion distribution

without relying on any complex hand-crafted motion esti-

mation strategy as in [39, 31].

Motion Compensation. In this paper, the motion com-

11012

0.02 0.05 0.08 0.11 0.14
Estimated Bitrate(Bpp)

0.02

0.05

0.08

0.11

0.14

A
ct

ua
l B

itr
at

e(
B

pp
)

(a) Actual and estimated bit rate.

0.1 0.2 0.3
Bpp

32

33

34

35

P
S
N
R
(d
B
)

(256, 38.8%)

(512, 36.0%)

(1024, 34.6%)

(2048, 26.9%)

The percentage of motion information

(b) Motion information percentages.

Figure 8: Bit rate analysis.

pensation network is utilized to refine the warped frame

based on the estimated optical flow. To evaluate the effec-

tiveness of this module, we perform another experiment by

removing the motion compensation network in the proposed

system. Experimental results of the alternative approach de-

noted by W/O MC (see the green curve in Fig. 6) show that

the PSNR without the motion compensation network will

drop by about 1.0 dB at the same bpp level.

Updating Strategy. As mentioned in Section 3.6, we

use an on-line buffer to store previously reconstructed

frames x̂t−1 in the training stage when encoding the cur-

rent frame xt. We also report the compression performance

when the previous reconstructed frame x̂t−1 is directly re-

placed by the previous original frame xt−1 in the training

stage. This result of the alternative approach denoted by

W/O update (see the red curve) is shown in Fig. 6. It

demonstrates that the buffering strategy can provide about

0.2dB gain at the same bpp level.

MV Encoder and Decoder Network. In our proposed

framework, we design a CNN model to compress the optical

flow and encode the corresponding motion representations.

It is also feasible to directly quantize the raw optical flow

values and encode it without using any CNN. We perform a

new experiment by removing the MV encoder and decoder

network. The experimental result in Fig. 6 shows that the

PSNR of the alternative approach denoted by W/O MVC

(see the magenta curve) will drop by more than 2 dB af-

ter removing the motion compression network. In addition,

the bit cost for encoding the optical flow in this setting and

the corresponding PSNR of the warped frame are also pro-

vided in Table 1 (denoted by W/O MVC). It is obvious that

it requires much more bits (0.20Bpp) to directly encode raw

optical flow values and the corresponding PSNR(24.43dB)

is much worse than our proposed method(28.17dB). There-

fore, compression of motion is crucial when optical flow is

used for estimating motion.

Motion Information. In Fig. 2(b), we also investigate

the setting which only retains the residual encoder and de-

coder network. Treating each frame independently without

using any motion estimation approach (see the yellow curve

denoted by W/O Motion Information) leads to more than

2dB drop in PSNR when compared with our method.

Running Time and Model Complexity. The total num-

ber of parameters of our proposed end-to-end video com-

pression framework is about 11M. In order to test the speed

of different codecs, we perform the experiments using the

computer with Intel Xeon E5-2640 v4 CPU and single Ti-

tan 1080Ti GPU. For videos with the resolution of 352x288,

the encoding (resp. decoding) speed of each iteration of Wu

et al.’s work [40] is 29fps (resp. 38fps), while the overall

speed of ours is 24.5fps (resp. 41fps). The correspond-

ing encoding speeds of H.264 and H.265 based on the offi-

cial software JM [2] and HM [3] are 2.4fps and 0.35fps, re-

spectively. The encoding speed of the commercial software

x264 [6] and x265 [7] are 250fps and 42fps, respectively.

Although the commercial codec x264 [6] and x265 [7] can

provide much faster encoding speed than ours, they need

a lot of code optimization. Correspondingly, recent deep

model compression approaches are off-the-shelf for mak-

ing the deep model much faster, which is beyond the scope

of this paper.

Bit Rate Analysis. In this paper, we use a probability es-

timation network in [12] to estimate the bit rate for encoding

motion information and residual information. To verify the

reliability, we compare the estimated bit rate and the actual

bit rate by using arithmetic coding in Fig. 8(a). It is ob-

vious that the estimated bit rate is closed to the actual bit

rate. In addition, we further investigate on the components

of bit rate. In Fig. 8(b), we provide the λ value and the per-

centage of motion information at each point. When λ in our

objective function λ∗D+R becomes larger, the whole Bpp

also becomes larger while the corresponding percentage of

motion information drops.

5. Conclusion

In this paper, we have proposed the fully end-to-end deep

learning framework for video compression. Our framework

inherits the advantages of both classic predictive coding

scheme in the traditional video compression standards and

the powerful non-linear representation ability from DNNs.

Experimental results show that our approach outperforms

the widely used H.264 video compression standard and the

recent learning based video compression system. The work

provides a promising framework for applying deep neural

network for video compression. Based on the proposed

framework, other new techniques for optical flow, image

compression, bi-directional prediction and rate control can

be readily plugged into this framework.

Acknowledgement This work was supported in part

by National Natural Science Foundation of China

(61771306) Natural Science Foundation of Shang-

hai(18ZR1418100), Chinese National Key S&T Special

Program(2013ZX01033001-002-002), Shanghai Key

Laboratory of Digital Media Processing and Transmis-

sions(STCSM 18DZ2270700).

11013

References

[1] F. bellard, bpg image format. http://bellard.org/

bpg/. Accessed: 2018-10-30. 1, 2

[2] The h.264/avc reference software. http://iphome.

hhi.de/suehring/. Accessed: 2018-10-30. 8

[3] Hevc test model (hm). https://hevc.hhi.

fraunhofer.de/HM-doc/. Accessed: 2018-10-30. 8

[4] Ultra video group test sequences. http://ultravideo.

cs.tut.fi. Accessed: 2018-10-30. 6

[5] Webp. https://developers.google.com/

speed/webp/. Accessed: 2018-10-30. 3

[6] x264, the best h.264/avc encoder. https:

//www.videolan.org/developers/x264.html.

Accessed: 2018-10-30. 8

[7] x265 hevc encoder / h.265 video codec. http://x265.

org. Accessed: 2018-10-30. 8

[8] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli,

R. Timofte, L. Benini, and L. V. Gool. Soft-to-hard vector

quantization for end-to-end learning compressible represen-

tations. In NIPS, pages 1141–1151, 2017. 1, 2, 5

[9] E. Agustsson, M. Tschannen, F. Mentzer, R. Timo-

fte, and L. Van Gool. Generative adversarial networks

for extreme learned image compression. arXiv preprint

arXiv:1804.02958, 2018. 1, 2

[10] M. H. Baig, V. Koltun, and L. Torresani. Learning to inpaint

for image compression. In NIPS, pages 1246–1255, 2017. 2

[11] J. Ballé, V. Laparra, and E. P. Simoncelli. End-

to-end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016. 1, 2, 4, 5

[12] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston.

Variational image compression with a scale hyperprior. arXiv

preprint arXiv:1802.01436, 2018. 1, 2, 5, 8

[13] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma. Deep-

coder: A deep neural network based video compression. In

VCIP, pages 1–4. IEEE, 2017. 2

[14] Z. Chen, T. He, X. Jin, and F. Wu. Learning for video com-

pression. arXiv preprint arXiv:1804.09869, 2018. 2

[15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, pages 2758–2766, 2015. 3

[16] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1

[17] T.-W. Hui, X. Tang, and C. Change Loy. Liteflownet: A

lightweight convolutional neural network for optical flow es-

timation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 8981–8989,

2018. 3

[18] T.-W. Hui, X. Tang, and C. C. Loy. A lightweight optical

flow cnn–revisiting data fidelity and regularization. arXiv

preprint arXiv:1903.07414, 2019. 3

[19] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh,

T. Chinen, S. Jin Hwang, J. Shor, and G. Toderici. Improved

lossy image compression with priming and spatially adaptive

bit rates for recurrent networks. In CVPR, June 2018. 1, 2

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 6

[21] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning con-

volutional networks for content-weighted image compres-

sion. In CVPR, June 2018. 1, 2

[22] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang. Cu par-

tition mode decision for hevc hardwired intra encoder using

convolution neural network. TIP, 25(11):5088–5103, 2016.

2

[23] G. Lu, W. Ouyang, D. Xu, X. Zhang, Z. Gao, and M.-T. Sun.

Deep kalman filtering network for video compression artifact

reduction. In ECCV, September 2018. 2

[24] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and

L. Van Gool. Conditional probability models for deep image

compression. In CVPR, number 2, page 3, 2018. 2

[25] D. Minnen, G. Toderici, M. Covell, T. Chinen, N. Johnston,

J. Shor, S. J. Hwang, D. Vincent, and S. Singh. Spatially

adaptive image compression using a tiled deep network. In

ICIP, pages 2796–2800. IEEE, 2017. 2

[26] C. V. networking Index. Forecast and methodology, 2016-

2021, white paper. San Jose, CA, USA, 1, 2016. 1

[27] A. Ranjan and M. J. Black. Optical flow estimation using a

spatial pyramid network. In CVPR, volume 2, page 2. IEEE,

2017. 3, 6

[28] O. Rippel and L. Bourdev. Real-time adaptive image com-

pression. In ICML, 2017. 1, 2

[29] A. Skodras, C. Christopoulos, and T. Ebrahimi. The jpeg

2000 still image compression standard. IEEE Signal Pro-

cessing Magazine, 18(5):36–58, 2001. 1, 2

[30] R. Song, D. Liu, H. Li, and F. Wu. Neural network-based

arithmetic coding of intra prediction modes in hevc. In VCIP,

pages 1–4. IEEE, 2017. 2

[31] G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, et al.

Overview of the high efficiency video coding(hevc) standard.

TCSVT, 22(12):1649–1668, 2012. 1, 2, 3, 4, 5, 6, 7

[32] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns

for optical flow using pyramid, warping, and cost volume. In

CVPR, pages 8934–8943, 2018. 3

[33] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy

image compression with compressive autoencoders. arXiv

preprint arXiv:1703.00395, 2017. 1, 2

[34] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent,

D. Minnen, S. Baluja, M. Covell, and R. Sukthankar. Vari-

able rate image compression with recurrent neural networks.

arXiv preprint arXiv:1511.06085, 2015. 1, 2, 5

[35] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Min-

nen, J. Shor, and M. Covell. Full resolution image compres-

sion with recurrent neural networks. In CVPR, pages 5435–

5443, 2017. 1, 2

[36] Y.-H. Tsai, M.-Y. Liu, D. Sun, M.-H. Yang, and J. Kautz.

Learning binary residual representations for domain-specific

video streaming. In Thirty-Second AAAI Conference on Ar-

tificial Intelligence, 2018. 2

[37] G. K. Wallace. The jpeg still picture compression standard.

IEEE Transactions on Consumer Electronics, 38(1):xviii–

xxxiv, 1992. 1, 2

11014

[38] Z. Wang, E. Simoncelli, A. Bovik, et al. Multi-scale struc-

tural similarity for image quality assessment. In ASILOMAR

CONFERENCE ON SIGNALS SYSTEMS AND COMPUT-

ERS, volume 2, pages 1398–1402. IEEE; 1998, 2003. 2,

6

[39] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.

Overview of the h. 264/avc video coding standard. TCSVT,

13(7):560–576, 2003. 1, 2, 3, 4, 5, 6, 7

[40] C.-Y. Wu, N. Singhal, and P. Krahenbuhl. Video compres-

sion through image interpolation. In ECCV, September 2018.

3, 6, 8

[41] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola,

and P. Krähenbühl. Compressed video action recognition. In

CVPR, pages 6026–6035, 2018. 1

[42] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman.

Video enhancement with task-oriented flow. arXiv preprint

arXiv:1711.09078, 2017. 2, 5

11015

